Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Oral Dis ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39121459

RESUMEN

OBJECTIVE: Electronic cigarette (e-cigarette) use among adults in the United States continues to rise. Particularly concerning is the impact of e-cigarette aerosol inhalation on the oral mucosa. Aerosols are derived from a heated e-liquid base of propylene glycol/glycerin (PG/G) often mixed with nicotine and chemical flavors. Of note, harmful and potentially harmful constituents (HPHCs), including metals and volatile organic compounds, have been detected in e-cigarette aerosols. It remains unknown, however, whether aerosols exclusively derived from e-liquid PG/G are detrimental to oral keratinocytes. The present study analyzed toxicological outcomes in normal oral keratinocytes exposed to model nicotine-free, unflavored PG/G e-liquid aerosols. MATERIALS AND METHODS: Cell viability/cytotoxicity, genotoxicity, and immunoblotting assays were conducted in NOKSI, a gingiva-derived oral keratinocyte cell line, following exposure to model e-liquid aerosols or non-aerosolized controls. The HPHC acrolein, reported to form DNA adducts in the buccal mucosa from e-cigarette users, was also used in similar assays. RESULTS: PG/G e-liquid aerosol extracts significantly enhanced cytotoxic and DNA damaging responses in NOKSI cells when compared to non-aerosolized e-liquid treatment. Acrolein treatment led to similar results. CONCLUSIONS: The aerosolization process of PG/G e-liquid is a critical determinant of marked cytotoxic and genotoxic stimuli in oral keratinocytes.

2.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38256941

RESUMEN

Tumour-associated angiogenesis play key roles in tumour growth and cancer metastasis. Consequently, several anti-angiogenic drugs such as sunitinib and axitinib have been approved for use as anti-cancer therapies. However, the majority of these drugs target the vascular endothelial growth factor A (VEGFA)/VEGF receptor 2 (VEGFR2) pathway and have shown mixed outcome, largely due to development of resistances and increased tumour aggressiveness. In this study, we used the zebrafish model to screen for novel anti-angiogenic molecules from a library of compounds derived from natural products. From this, we identified canthin-6-one, an indole alkaloid, which inhibited zebrafish intersegmental vessel (ISV) and sub-intestinal vessel development. Further characterisation revealed that treatment of canthin-6-one reduced ISV endothelial cell number and inhibited proliferation of human umbilical vein endothelial cells (HUVECs), suggesting that canthin-6-one inhibits endothelial cell proliferation. Of note, canthin-6-one did not inhibit VEGFA-induced phosphorylation of VEGFR2 in HUVECs and downstream phosphorylation of extracellular signal-regulated kinase (Erk) in leading ISV endothelial cells in zebrafish, suggesting that canthin-6-one inhibits angiogenesis independent of the VEGFA/VEGFR2 pathway. Importantly, we found that canthin-6-one impairs tumour-associated angiogenesis in a zebrafish B16F10 melanoma cell xenograft model and synergises with VEGFR inhibitor sunitinib malate to inhibit developmental angiogenesis. In summary, we showed that canthin-6-one exhibits anti-angiogenic properties in both developmental and pathological contexts in zebrafish, independent of the VEGFA/VEGFR2 pathway and demonstrate that canthin-6-one may hold value for further development as a novel anti-angiogenic drug.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38357015

RESUMEN

Background: Increasing use prevalence of waterpipe tobacco smoking raises concerns about environmental impacts from waterpipe waste disposal. The U.S. Food and Drug Administration (FDA) is required to assess the environmental impact of its tobacco regulatory actions per the National Environmental Policy Act. This study builds on FDA's efforts characterizing the aquatic toxicity of waterpipe wastewater chemicals. Methods: We compiled a comprehensive list of waterpipe wastewater chemical concentrations from literature. We then selected chemicals for risk assessment by estimating persistence, bioaccumulation, and aquatic toxicity characteristics (PBT; U.S. Environmental Protection Agency), and hazardous concentration values (concentration affecting specific proportion of species). Results: Of 38 chemicals in waterpipe wastewater with concentration data, 20 are listed as harmful or potentially harmful constituents (HPHCs) in tobacco smoke and tobacco products by FDA, and 15 are hazardous waste per U. S. Environmental Protection Agency. Among metals, six (cadmium, chromium, lead, mercury, nickel and selenium) are included in both HPHC and hazardous waste lists and were selected for future risk assessments. Among non-metals, nicotine, and 4-methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK) were shortlisted, as they are classified as persistent and toxic. Further, N-nitrosonornicotine (NNN), with a low HC50 value for chronic aquatic toxicity, had high aquatic toxicity concern and is selected. Conclusions: The presence of multiple hazardous compounds in waterpipe wastewater highlights the importance of awareness on the proper disposal of waterpipe wastewater in residential and retail settings. Future studies can build on the hazard characterization provided in this study through fate and transport modeling, exposure characterization and risk assessments of waterpipe wastewater chemicals.

4.
Pharmaceuticals (Basel) ; 14(7)2021 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-34206901

RESUMEN

Lymphangiogenesis, the formation of new lymphatic vessels from pre-existing vasculature, plays critical roles in disease, including in cancer metastasis and chronic inflammation. Preclinical and recent clinical studies have now demonstrated therapeutic utility for several anti-lymphangiogenic agents, but optimal agents and efficacy in different settings remain to be determined. We tested the anti-lymphangiogenic property of 3,4-Difluorobenzocurcumin (CDF), which has previously been implicated as an anti-cancer agent, using zebrafish embryos and cultured vascular endothelial cells. We used transgenic zebrafish labelling the lymphatic system and found that CDF potently inhibits lymphangiogenesis during embryonic development. We also found that the parent compound, Curcumin, does not inhibit lymphangiogenesis. CDF blocked lymphatic and venous sprouting, and lymphatic migration in the head and trunk of the embryo. Mechanistically, CDF impaired VEGFC-VEGFR3-ERK signalling in vitro and in vivo. In an in vivo pathological model of Vegfc-overexpression, treatment with CDF rescued endothelial cell hyperplasia. CDF did not inhibit the kinase activity of VEGFR3 yet displayed more prolonged activity in vivo than previously reported kinase inhibitors. These findings warrant further assessment of CDF and its mode of action as a candidate for use in metastasis and diseases of aberrant lymphangiogenesis.

5.
J AOAC Int ; 104(2): 485-497, 2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-33259591

RESUMEN

BACKGROUND: Phyllanthus species exhibit a wide range of in vitro and in vivo pharmacological activities; however, little is known about the compounds present in the extracts that are responsible for such actions. OBJECTIVE: Development and validation of a simple reversed phase HPLC-PDA method for profiling of phyllanthin, hypophyllanthin, nirtetralin, and niranthin in extracts of Phyllanthus species was carried out. METHODS: Separation was achieved using an XBridge column® (150 × 4.6 mm, 5.0 µm id) in an isocratic elution mode with mobile phase comprising of a mixture of acetonitrile and water with TFA (0.05%, v/v, pH = 2.15) at ambient temperature with a flow rate of 1 mL/min. RESULTS: Phyllanthin, hypophyllanthin, nirtetralin, and niranthin were eluted at mean retention times of 10.47, 11.10, 13.67, and 14.53 min, respectively. LOD and LOQ for all four analytes were 0.75 and 3.00 µg/mL, respectively. RSDr values for intraday and interday precision for phyllanthin, hypophyllanthin, nirtetralin, and niranthin were 0.38-1.32 and 0.45-1.77%; 0.22-3.69 and 0.24-3.04%, 0.73-2.37 and 0.09-0.31%, and 1.56-2.77 and 0.12-0.68%, respectively. CONCLUSIONS: The developed and validated HPLC-PDA method was applied for identification and quantification of phyllanthin, hypophyllanthin, nirtetralin, and niranthin in extracts of different plant parts of selected Phyllanthus species. The outcome of the present investigation could be useful for selection of best species to promote its commercial cultivation and suitable extraction solvent for preparation of lignan-enriched fractions. This HPLC-PDA method could be useful for quality control of herbal formulations containing plants from Phyllanthus species.


Asunto(s)
Lignanos , Phyllanthus , Anisoles , Cromatografía Líquida de Alta Presión , Dioxoles , India , Extractos Vegetales
6.
Sci Rep ; 10(1): 11907, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32681061

RESUMEN

Electronic nicotine delivery systems (ENDS) are prefilled, battery-operated products intended to deliver nicotine to the user via an inhaled complex aerosol formed by heating a liquid composed of propylene glycol and glycerol, also referred to as vegetable glycerin and collectively called e-liquid, that contains nicotine and various flavor ingredients. Since their introduction in 2006, the number of ENDS on the market has increased exponentially. Despite their growing ubiquity, the possible health risks associated with ENDS use remain poorly understood. One potential concern is the presence of toxic metals in the e-liquid and aerosol. Herein, we report the evaluation of the metal content in the e-liquids from a series of commercially available cigalike ENDS brands (various flavors) determined using inductively coupled plasma mass spectrometry (ICP-MS) following e-liquid extraction. Each brand of cigalike ENDS was purchased at least three times at retail outlets in the Baltimore, Maryland metropolitan region over a period of six months (September 2017 to February 2018). This allowed for comparison of batch-to-batch variability. Several potentially toxic metals, including lead, chromium, copper, and nickel were detected in the e-liquids. In addition, high variability in metal concentrations within and between brands and flavors was observed . The internal assembled parts of each cartridge were analyzed by X-ray imaging, before dissembling so that the materials used to manufacture each cartridge could be evaluated to determine the metals they contained. Following washing to remove traces of e-liquid, lead, chromium, copper and nickel were all detected in the cigalike ENDS prefilled cartridges, suggesting one potential source for the metals found in the e-liquids. Collectively, these findings can inform further evaluation of product design and manufacturing processes, including quantification of metal concentrations in e-liquids over foreseeable storage times, safeguards against high concentrations of metals in the e-liquid before and after aerosolization (by contact with a metal heating coil), and control over batch-to-batch variability.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Metales/análisis , Imagenología Tridimensional , Encuestas y Cuestionarios
7.
Adv Exp Med Biol ; 1164: 11-34, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31576537

RESUMEN

Of the ~129,079 new cases of nasopharyngeal carcinoma (NPC) and 72,987 associated deaths estimated for 2018, the majority will be geographically localized to South East Asia, and likely to show an upward trend annually. It is thought that disparities in dietary habits, lifestyle, and exposures to harmful environmental factors are likely the root cause of NPC incidence rates to differ geographically. Genetic differences due to ethnicity and the Epstein Barr virus (EBV) are likely contributing factors. Pertinently, NPC is associated with poor prognosis which is largely attributed to lack of awareness of the salient symptoms of NPC. These include nose hemorrhage and headaches and coupled with detection and the limited therapeutic options. Treatment options include radiotherapy or chemotherapy or combination of both. Surgical excision is generally the last option considered for advanced and metastatic disease, given the close proximity of nasopharynx to brain stem cell area, major blood vessels, and nerves. To improve outcome of NPC patients, novel cellular and in vivo systems are needed to allow an understanding of the underling molecular events causal for NPC pathogenesis and for identifying novel therapeutic targets and effective therapies. While challenges and gaps in current NPC research are noted, some advances in targeted therapies and immunotherapies targeting EBV NPCs are discussed in this chapter, which may offer improvements in outcome of NPC patients.


Asunto(s)
Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Asia Sudoriental/epidemiología , Infecciones por Virus de Epstein-Barr/complicaciones , Humanos , Carcinoma Nasofaríngeo/complicaciones , Carcinoma Nasofaríngeo/epidemiología , Carcinoma Nasofaríngeo/patología , Carcinoma Nasofaríngeo/terapia , Neoplasias Nasofaríngeas/complicaciones , Neoplasias Nasofaríngeas/epidemiología , Neoplasias Nasofaríngeas/patología , Neoplasias Nasofaríngeas/terapia , Factores de Riesgo
8.
Cancer Biol Med ; 16(2): 264-275, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31516747

RESUMEN

OBJECTIVE: Lack of effective therapies remains a problem in the treatment of oral squamous cell carcinoma (OSCC), especially in patients with advanced tumors. OSCC development is driven by multiple aberrancies within the cell cycle pathway, including amplification of cyclin D1 and loss of p16. Hence, cell cycle inhibitors of the CDK4/6-cyclin D axis are appealing targets for OSCC treatment. Here, we determined the potency of palbociclib and identified genetic features that are associated with the response of palbociclib in OSCC. METHODS: The effect of palbociclib was evaluated in a panel of well-characterized OSCC cell lines by cell proliferation assays and further confirmed by in vivo evaluation in xenograft models. PIK3CA-mutant isogenic cell lines were used to investigate the effect of PIK3CA mutation towards palbociclib response. RESULTS: We demonstrated that 80% of OSCC cell lines are sensitive to palbociclib at sub-micromolar concentrations. Consistently, palbociclib was effective in controlling tumor growth in mice. We identified that palbociclib-resistant cells harbored mutations in PIK3CA. Using isogenic cell lines, we showed that PIK3CA mutant cells are less responsive to palbociclib as compared to wild-type cells with concurrent upregulation of CDK2 and cyclin E1 protein levels. We further demonstrated that the combination of a PI3K/mTOR inhibitor (PF-04691502) and palbociclib completely controlled tumor growth in mice. CONCLUSIONS: This study demonstrated the potency of palbociclib in OSCC models and provides a rationale for the inclusion of PIK3CA testing in the clinical evaluation of CDK4/6 inhibitors and suggests combination approaches for further clinical studies.

9.
Dis Markers ; 2019: 3857853, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31236144

RESUMEN

Nasopharyngeal carcinoma (NPC) is a highly metastatic cancer prevalent in Southern China and Southeast Asia. The current knowledge on the molecular pathogenesis of NPC is still inadequate to improve disease management. Using gene expression microarrays, we have identified the four-jointed box 1 (FJX1) gene to be upregulated in primary NPC tissues relative to nonmalignant tissues. An orthologue of human FJX1, the four-jointed (fj) gene in Drosophila and Fjx1 in mouse, has reported to be associated with cancer progression pathways. However, the exact function of FJX1 in human is not well characterized. The overexpression of FJX1 mRNA was validated in primary NPC tissue samples, and the level of FJX1 protein was significantly higher in a subset of NPC tissues (42%) compared to the normal epithelium, where no expression of FJX1 was observed (p = 0.01). FJX1 is also found to be overexpressed in microarray datasets and TCGA datasets of other cancers including head and neck cancer, colorectal, and ovarian cancer. Both siRNA knockdown and overexpression experiments in NPC cell lines showed that FJX1 promotes cell proliferation, anchorage-dependent growth, and cellular invasion. Cyclin D1 and E1 mRNA levels were increased following FJX1 expression indicating that FJX1 enhances proliferation by regulating key proteins governing the cell cycle. Our data suggest that the overexpression of FJX1 contributes to a more aggressive phenotype of NPC cells and further investigations into FJX1 as a potential therapeutic target for NPC are warranted. The evaluation of FJX1 as an immunotherapy target for NPC and other cancers is currently ongoing.


Asunto(s)
Biomarcadores de Tumor/genética , Carcinoma/genética , Proteínas de la Membrana/genética , Neoplasias Nasofaríngeas/genética , Biomarcadores de Tumor/metabolismo , Carcinoma/metabolismo , Carcinoma/patología , Proliferación Celular , Ciclinas/genética , Ciclinas/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/fisiología , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intercelular , Proteínas de la Membrana/metabolismo , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patología , Regulación hacia Arriba
10.
Cell Oncol (Dordr) ; 42(4): 477-490, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30949979

RESUMEN

PURPOSE: Oral squamous cell carcinoma (OSCC) is a challenging disease to treat. Up to 50% of OSCC patients with advanced disease develop recurrences. Elucidation of key molecular mechanisms underlying OSCC development may provide opportunities to target specific genes and, thus, to improve patient survival. In this study, we examined the expression and functional role of interferon transmembrane protein 3 (IFITM3) in OSCC development. METHODS: The expression of IFITM3 in OSCC and normal oral mucosal tissues was assessed by qRT-PCR and immunohistochemistry. The role of IFITM3 in driving OSCC cell proliferation and survival was examined using siRNA-mediated gene knockdown, and the role of IFITM3 in driving cell cycle regulators was examined using Western blotting. RESULTS: We found that IFITM3 is overexpressed in more than 79% of primary OSCCs. We also found that IFITM3 knockdown led to impaired OSCC cell growth through inhibition of cell proliferation, induction of cell cycle arrest, senescence and apoptosis. In addition, we found that IFITM3 knockdown led to reduced expressions of CCND1 and CDK4 and reduced RB phosphorylation, leading to inhibition of OSCC cell growth. This information may be instrumental for the design of novel targeted therapeutic strategies. CONCLUSIONS: From our data we conclude that IFITM3 is overexpressed in OSCC and may regulate the CCND1-CDK4/6-pRB axis to mediate OSCC cell growth.


Asunto(s)
Carcinoma de Células Escamosas/metabolismo , Ciclina D1/metabolismo , Quinasa 4 Dependiente de la Ciclina/metabolismo , Técnicas de Silenciamiento del Gen , Proteínas de la Membrana/metabolismo , Neoplasias de la Boca/metabolismo , Proteínas de Unión al ARN/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Apoptosis , Carcinoma de Células Escamosas/patología , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Senescencia Celular , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mucosa Bucal/patología , Neoplasias de la Boca/patología , Fosforilación , Proteína de Retinoblastoma/metabolismo , Transducción de Señal
11.
SLAS Discov ; 24(5): 548-562, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30897027

RESUMEN

DNA mismatch repair (MMR) deficiency has been associated with a higher risk of developing colorectal, endometrial, and ovarian cancer, and confers resistance in conventional chemotherapy. In addition to the lack of treatment options that work efficaciously on these MMR-deficient cancer patients, there is a great need to discover new drug leads for this purpose. In this study, we screened through a library of commercial and semisynthetic natural compounds to identify potential synthetic lethal drugs that may selectively target MLH1 mutants using MLH1 isogenic colorectal cancer cell lines and various cancer cell lines with known MLH1 status. We identified a novel diarylpentanoid analogue, 2-benzoyl-6-(2,3-dimethoxybenzylidene)-cyclohexenol, coded as AS13, that demonstrated selective toxicity toward MLH1-deficient cancer cells. Subsequent analysis suggested AS13 induced elevated levels of oxidative stress, resulting in DNA damage where only the proficient MLH1 cells were able to be repaired and hence escaping cellular death. While AS13 is modest in potency and selectivity, this discovery has the potential to lead to further drug development that may offer better treatment options for cancer patients with MLH1 deficiency.


Asunto(s)
Compuestos de Bencilideno/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Ciclohexenos/farmacología , Homólogo 1 de la Proteína MutL/genética , Estrés Oxidativo/efectos de los fármacos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Ciclohexenos/química , Daño del ADN/efectos de los fármacos , Reparación de la Incompatibilidad de ADN/efectos de los fármacos , Descubrimiento de Drogas , Células HT29 , Humanos , Homólogo 1 de la Proteína MutL/deficiencia , Mutaciones Letales Sintéticas/efectos de los fármacos , Mutaciones Letales Sintéticas/genética
12.
Target Oncol ; 14(2): 223-235, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30806895

RESUMEN

BACKGROUND: Given that aberrant activation of epidermal growth factor receptor family receptors (ErbB) is a common event in oral squamous cell carcinoma, and that high expression of these receptor proteins is often associated with poor prognosis, this rationalizes the approach of targeting ErbB signaling pathways to improve the survival of patients with oral squamous cell carcinoma. However, monotherapy with the ErbB blocker afatinib has shown limited survival benefits. OBJECTIVES: This study was performed to identify mechanisms of afatinib resistance and to explore potential afatinib-based combination treatments with other targeted inhibitors in oral squamous cell carcinoma. METHODS: We determined the anti-proliferative effects of afatinib on a panel of oral squamous cell carcinoma cell lines using a crystal violet-growth inhibition assay, click-iT 5-ethynyl-2'-deoxyuridine staining, and cell-cycle analysis. Biochemical assays were performed to study the underlying mechanism of drug treatment as a single agent or in combination with the MEK inhibitor trametinib. We further evaluated and compared the anti-tumor effects of single agent and combined treatment by using oral squamous cell carcinoma xenograft models. RESULTS: In this study, we showed that afatinib inhibited oral squamous cell carcinoma cell proliferation via cell-cycle arrest at the G0/G1 phase, and inhibited tumor growth in xenograft mouse models. Interestingly, we demonstrated reactivation of the mitogen-activated protein kinase (ERK1/2) pathway in vitro, which possibly reduced the effects of ErbB inhibition. Concomitant treatment of oral squamous cell carcinoma cells with afatinib and trametinib synergized the anti-tumor effects in oral squamous cell carcinoma-bearing mouse models. CONCLUSIONS: Our findings provide insight into the molecular mechanism of resistance to afatinib and support further clinical evaluation into the combination of afatinib and MEK inhibition in the treatment of oral squamous cell carcinoma.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Carcinoma de Células Escamosas/tratamiento farmacológico , Sinergismo Farmacológico , Neoplasias de la Boca/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Afatinib/administración & dosificación , Animales , Apoptosis/efectos de los fármacos , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/patología , Piridonas/administración & dosificación , Pirimidinonas/administración & dosificación , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Sci Rep ; 9(1): 2357, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30787334

RESUMEN

The use of EGFR inhibitors on oral squamous cell carcinoma (OSCC) as monotherapy yielded modest clinical outcomes and therefore would benefit from biomarkers that could predict which patient subsets are likely to respond. Here, we determined the efficacy of erlotinib in OSCC cell lines, and by comparing sensitive and resistant lines to identify potential biomarkers. We focused on the 4717C > G polymorphism in periplakin (PPL) where the CC genotype was associated with erlotinib resistance. To validate this, erlotinib-resistant cell lines harbouring CC genotype were engineered to overexpress the GG genotype and vice versa. Isogenic cell lines were then studied for their response to erlotinib treatment. We demonstrated that overexpression of the GG genotype in erlotinib-resistant lines sensitized them to erlotinib and inhibition of AKT phosphorylation. Similarly, the expression of the CC genotype conferred resistance to erlotinib with a concomitant increase in AKT phosphorylation. We also demonstrated that cell lines with the CC genotype generally are more resistant to other EGFR inhibitors than those with the GG genotype. Overall, we showed that a specific polymorphism in the PPL gene could confer resistance to erlotinib and other EGFR inhibitors and further work to evaluate these as biomarkers of response is warranted.


Asunto(s)
Clorhidrato de Erlotinib/uso terapéutico , Plaquinas/genética , Biomarcadores Farmacológicos , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/genética , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/efectos de los fármacos , Receptores ErbB/genética , Genotipo , Humanos , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/metabolismo , Fosforilación , Polimorfismo de Nucleótido Simple/genética , Quinazolinas/farmacología , Transducción de Señal/efectos de los fármacos
14.
Hum Vaccin Immunother ; 15(1): 167-178, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30193086

RESUMEN

Peptide vaccines derived from tumour-associated antigens have been used as an immunotherapeutic approach to induce specific cytotoxic immune response against tumour. We previously identified that MAGED4B and FJX1 proteins are overexpressed in HNSCC patients; and further demonstrated that two HLA-A2-restricted 9-11 amino acid peptides derived from these proteins were able to induce anti-tumour immune responses in vitro independently using PBMCs isolated from these patients. In this study, we evaluated the immunogenicity and efficacy of a dual-antigenic peptide vaccine (PV1), comprised of MAGED4B and FJX1 peptides in HNSCC patients. We first demonstrated that 94.8% of HNSCC patients expressed MAGED4B and/or FJX1 by immunohistochemistry, suggesting that PV1 could benefit the majority of HNSCC patients. The presence of pre-existing MAGED4B and FJX1-specific T-cells was detected using a HLA-A2 dimer assay and efficacy of PV1 to induce T-cell to secrete cytotoxic cytokine was evaluated using ELISPOT assay. Pre-existing PV1-specific T-cells were detected in all patients. Notably, we demonstrated that patients' T-cells were able to secrete cytotoxic cytokines upon exposure to target cells expressing the respective antigen post PV1 stimulation. Furthermore, patients with high expression of MAGED4B and FJX1 in their tumours were more responsive to PV1 stimulation, demonstrating the specificity of the PV1 peptide vaccine. Additionally, we also demonstrated the expression of MAGED4B and FJX1 in breast, lung, colon, prostate and rectal cancer suggesting the potential use of PV1 in these cancers. In summary, PV1 could be a good vaccine candidate for the treatment of HNSCC patients and other cancers expressing these antigens.


Asunto(s)
Antígenos de Neoplasias/inmunología , Vacunas contra el Cáncer/inmunología , Citocinas/inmunología , Neoplasias de Cabeza y Cuello/terapia , Linfocitos T Citotóxicos/inmunología , Vacunas de Subunidad/inmunología , Adulto , Anciano , Línea Celular Tumoral , Femenino , Expresión Génica , Antígeno HLA-A2/inmunología , Neoplasias de Cabeza y Cuello/inmunología , Humanos , Leucocitos Mononucleares/inmunología , Activación de Linfocitos , Masculino , Persona de Mediana Edad
15.
Environ Int ; 123: 201-208, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30530162

RESUMEN

BACKGROUND: Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants formed from incomplete combustion of organic matter; some PAHs are carcinogens. Smoking, diet, and other activities contribute to exposure to PAHs. Exposure data to PAHs among combustible tobacco product users (e.g. cigarette smokers) exist; however, among non-combustible tobacco products users (e.g., e-cigarette users), such data are rather limited. OBJECTIVES: We sought to evaluate exposure to PAHs among participants in Wave 1 (2013-2014) of the Population Assessment of Tobacco and Health (PATH) Study based on the type of tobacco product (combustible vs non-combustible), and frequency and intensity of product use. METHODS: We quantified seven PAH urinary biomarkers in 11,519 PATH Study participants. From self-reported information, we categorized 8327 participants based on their use of tobacco products as never-tobacco user (never user, n = 1700), exclusive current established combustible products user (combustible products user, n = 5767), and exclusive current established non-combustible products user (non-combustible products user, n = 860). We further classified tobacco users as exclusive cigarette user (cigarette user, n = 3964), exclusive smokeless product user (SLT user, n = 509), and exclusive e-cigarette user (e-cigarette user, n = 280). Last, we categorized frequency of product use (everyday vs some days) and time since use (last hour, within 3 days, over 3 days). We calculated geometric mean (GM) concentrations, and evaluated associations between tobacco product user categories and PAH biomarkers concentrations. RESULTS: Combustible products users had significantly higher GMs of all biomarkers than non-combustible products users and never users; non-combustible products users had significantly higher GMs than never users for four of seven biomarkers. For all biomarkers examined, cigarette users had the highest GMs compared to other tobacco-product users. Interestingly, GMs of 2-hydroxyfluorene, 3-hydroxyfluorene and ∑2,3-hydroxyphenanthrene were significantly higher in SLT users than in e-cigarette users; 3-hydroxyfluorene and 1-hydroxypyrene were also significantly higher in e-cigarette and SLT users than in never users. Everyday cigarette and SLT users had significantly higher GMs for most biomarkers than some days' users; cigarette and SLT users who used the product in the last hour had significantly higher GMs of most biomarkers than other occasional cigarette or SLT users respectively. By contrast, everyday e-cigarette users' GMs of most biomarkers did not differ significantly from those in some days' e-cigarette users; we did not observe clear trends by time of last use among e-cigarette users. CONCLUSIONS: Users of tobacco products had higher PAH urinary biomarker concentrations compared to never users, and concentrations differed by type and frequency of tobacco product use.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos/orina , Productos de Tabaco , Adolescente , Adulto , Biomarcadores , Sistemas Electrónicos de Liberación de Nicotina , Femenino , Humanos , Masculino , Persona de Mediana Edad , Autoinforme , Fumar , Estados Unidos , Adulto Joven
16.
Assay Drug Dev Technol ; 16(7): 408-419, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29985634

RESUMEN

Natural products are prolific producers of diverse chemical scaffolds, which have yielded several clinically useful drugs. However, the complex features of natural products present challenges for identifying bioactive molecules using high-throughput screens. For most assays, measured endpoints are either colorimetric or luminescence based. Thus, the presence of the major metabolites, tannins, and chlorophylls, in natural products could potentially interfere with these measurements to give either false-positive or false-negative hits. In this context, zebrafish phenotypic assays provide an alternative approach to bioprospect naturally occurring bioactive compounds. Whether tannins and/or chlorophylls interfere in zebrafish phenotypic assays, is unclear. In this study, we evaluated the interference potential of tannins and chlorophylls against efficacy of known small-molecule inhibitors that are known to cause phenotypic abnormalities in developing zebrafish embryos. First, we fractionated tannin-enriched fraction (TEF) and chlorophyll-enriched fraction (CEF) from Camellia sinensis and cotreated them with PD0325901 [mitogen-activated protein kinase-kinase (MEK) inhibitor] and sunitinib malate (SM; anti-[lymph]angiogenic drug). While TEF and CEF did not interfere with phenotypic or molecular endpoints of PD0325901, TEF at 100 µg/mL partially masked the antiangiogenic effect of SM. On the other hand, CEF (100 µg/mL) was toxic when treated up to 6 dpf. Furthermore, CEF at 100 µg/mL potentially enhanced the activity of γ-secretase inhibitors, resulting in toxicity of treated embryos. Our study provides evidence that the presence of tannin and/or chlorophyll in natural products do interfere with zebrafish phenotype assays used for identifying potential hits. However, this may be target/assay dependent and thus requiring additional optimization steps to assess interference potential of tannins and chlorophylls before performing any screening assay.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Benzamidas/farmacología , Clorofila/antagonistas & inhibidores , Difenilamina/análogos & derivados , Sunitinib/farmacología , Taninos/antagonistas & inhibidores , Animales , Clorofila/metabolismo , Difenilamina/farmacología , Evaluación Preclínica de Medicamentos , Fenotipo , Taninos/metabolismo , Pez Cebra
17.
Phytomedicine ; 39: 33-41, 2018 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-29433681

RESUMEN

BACKGROUND: The CXCR4-RhoA and PI3K-mTOR signaling pathways play crucial roles in the dissemination and tumorigenesis of oral squamous cell carcinoma (OSCC). Activation of these pathways have made them promising molecular targets in the treatment of OSCC. Zerumbone, a bioactive monocyclic sesquiterpene isolated from the rhizomes of tropical ginger, Zingiber zerumbet (L.) Roscoe ex Sm. has displayed promising anticancer properties with the ability to modulate multiple molecular targets involved in carcinogenesis. While the anticancer activities of zerumbone have been well explored across different types of cancer, the molecular mechanism of action of zerumbone in OSCC remains largely unknown. PURPOSE: Here, we investigated whether OSCC cells were sensitive towards zerumbone treatment and further determined the molecular pathways involved in the mechanism of action. METHODS: Cytotoxicity, anti-proliferative, anti-migratory and anti-invasive effects of zerumbone were tested on a panel of OSCC cell lines. The mechanism of action of zerumbone was investigated by analysing the effects on the CXCR4-RhoA and PI3K-mTOR pathways by western blotting. RESULTS: Our panel of OSCC cells was broadly sensitive towards zerumbone with IC50 values of less than 5 µM whereas normal keratinocyte cells were less responsive with IC50 values of more than 25 µM. Representative OSCC cells revealed that zerumbone inhibited OSCC proliferation and induced cell cycle arrest and apoptosis. In addition, zerumbone treatment inhibited migration and invasion of OSCC cells, with concurrent suppression of endogenous CXCR4 protein expression in a time and dose-dependent manner. RhoA-pull down assay showed reduction in the expression of RhoA-GTP, suggesting the inactivation of RhoA by zerumbone. In association with this, zerumbone also inhibited the PI3K-mTOR pathway through the inactivation of Akt and S6 proteins. CONCLUSION: We provide evidence that zerumbone could inhibit the activation of CXCR4-RhoA and PI3K-mTOR signaling pathways leading to the reduced cell viability of OSCC cells. Our results suggest that zerumbone is a promising phytoagent for development of new therapeutics for OSCC treatment.


Asunto(s)
Carcinoma de Células Escamosas/tratamiento farmacológico , Neoplasias de la Boca/tratamiento farmacológico , Receptores CXCR4/metabolismo , Sesquiterpenos/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Receptores CXCR4/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Proteína de Unión al GTP rhoA/metabolismo
19.
Nat Commun ; 8: 15921, 2017 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-28665395

RESUMEN

Clinical challenges exist in reducing prostate cancer (PCa) disparities. The RNA splicing landscape of PCa across racial populations has not been fully explored as a potential molecular mechanism contributing to race-related tumour aggressiveness. Here, we identify novel genome-wide, race-specific RNA splicing events as critical drivers of PCa aggressiveness and therapeutic resistance in African American (AA) men. AA-enriched splice variants of PIK3CD, FGFR3, TSC2 and RASGRP2 contribute to greater oncogenic potential compared with corresponding European American (EA)-expressing variants. Ectopic overexpression of the newly cloned AA-enriched variant, PIK3CD-S, in EA PCa cell lines enhances AKT/mTOR signalling and increases proliferative and invasive capacity in vitro and confers resistance to selective PI3Kδ inhibitor, CAL-101 (idelalisib), in mouse xenograft models. High PIK3CD-S expression in PCa specimens associates with poor survival. These results highlight the potential of RNA splice variants to serve as novel biomarkers and molecular targets for developmental therapeutics in aggressive PCa.


Asunto(s)
Empalme Alternativo , Negro o Afroamericano/genética , Resistencia a Antineoplásicos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Anciano , Animales , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Xenoinjertos , Humanos , Masculino , Ratones , Ratones SCID , Persona de Mediana Edad , Invasividad Neoplásica , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/metabolismo
20.
Sci Rep ; 7: 42980, 2017 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-28256603

RESUMEN

In this study, we first performed whole exome sequencing of DNA from 10 untreated and clinically annotated fresh frozen nasopharyngeal carcinoma (NPC) biopsies and matched bloods to identify somatically mutated genes that may be amenable to targeted therapeutic strategies. We identified a total of 323 mutations which were either non-synonymous (n = 238) or synonymous (n = 85). Furthermore, our analysis revealed genes in key cancer pathways (DNA repair, cell cycle regulation, apoptosis, immune response, lipid signaling) were mutated, of which those in the lipid-signaling pathway were the most enriched. We next extended our analysis on a prioritized sub-set of 37 mutated genes plus top 5 mutated cancer genes listed in COSMIC using a custom designed HaloPlex target enrichment panel with an additional 88 NPC samples. Our analysis identified 160 additional non-synonymous mutations in 37/42 genes in 66/88 samples. Of these, 99/160 mutations within potentially druggable pathways were further selected for validation. Sanger sequencing revealed that 77/99 variants were true positives, giving an accuracy of 78%. Taken together, our study indicated that ~72% (n = 71/98) of NPC samples harbored mutations in one of the four cancer pathways (EGFR-PI3K-Akt-mTOR, NOTCH, NF-κB, DNA repair) which may be potentially useful as predictive biomarkers of response to matched targeted therapies.


Asunto(s)
Carcinoma/diagnóstico , Exoma/genética , Neoplasias Nasofaríngeas/diagnóstico , Adulto , Biomarcadores de Tumor/genética , Carcinoma/genética , Reparación del ADN/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/genética , Análisis de Secuencia de ADN , Transducción de Señal/genética , Secuenciación del Exoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA