Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
1.
J Assoc Physicians India ; 72(1): 43-46, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38736073

RESUMEN

INTRODUCTION: A survey-based approach to managing antibiotic-resistant infections in the intensive care unit (ICU) setting, with a focus on carbapenem-resistant Enterobacteriaceae (CRE) cases, was conducted. Among CRE, New Delhi metallo-ß-lactamase 1 (NDM-1) is a carbapenemase that is resistant to ß-lactam antibiotics and has a broader spectrum of antimicrobial resistance than other carbapenemase types. The article explains that healthcare-associated infections (HAIs) are a significant problem, particularly in low- and middle-income countries, and that carbapenem in combination with other antibiotics are the most potent class of antimicrobial agents effective in treating life-threatening bacterial infections, including those caused by resistant strains. AIM: The survey aimed to gather critical care healthcare professionals (HCPs') opinions on their current practices in managing infections acquired in the hospital and ICU settings, with a focus on CRE cases, specifically NDM-1 and other antibiotic-resistant infections. METHODS: Responses from critical care healthcare professionals, including online surveys and in-person interviews, to gain insights into the management of infections caused by multidrug-resistant bacteria. The findings related to the insights on the prevalence of bacterial flora, clinical experiences on efficacy and safety of meropenem sulbactam ethylenediaminetetraacetic acid (EDTA) (MSE) in CRE cases, and various combination therapies of antibiotics used to treat antibiotic-resistant infections in ICU setting were evaluated. RESULTS: Klebsiella pneumoniae bacteria were the most common bacteria in cultures, followed by Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii. NDM-1 was the type of carbapenemase found in around 50% of CRE patients. MSE is among the most preferred antibiotics besides colistin, polymyxin B, and ceftazidime avibactum for CRE cases and specifically for NDM-1 cases due to its high rate of efficacy and safety. CONCLUSION: The article concludes with a discussion on the antibiotics used in response to CRE cases, reporting that critical care HCP considers MSE with high efficacy and safe antibiotic combination and was used as both monotherapy and in combination with other antibiotics. The survey highlights the need for exploring and better understanding the role of MSE in the management of CRE infections, especially in NDM-1.


Asunto(s)
Antibacterianos , Enterobacteriaceae Resistentes a los Carbapenémicos , Cuidados Críticos , Infecciones por Enterobacteriaceae , Unidades de Cuidados Intensivos , Humanos , Antibacterianos/uso terapéutico , Infecciones por Enterobacteriaceae/tratamiento farmacológico , Cuidados Críticos/métodos , Infección Hospitalaria/tratamiento farmacológico , Infección Hospitalaria/microbiología , Encuestas y Cuestionarios , beta-Lactamasas , Farmacorresistencia Bacteriana Múltiple , Meropenem/uso terapéutico , India , Actitud del Personal de Salud , Polimixina B/uso terapéutico , Carbapenémicos/uso terapéutico , Carbapenémicos/farmacología , Klebsiella pneumoniae/efectos de los fármacos , Personal de Salud
2.
Science ; 384(6694): 428-437, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38662827

RESUMEN

A role for vitamin D in immune modulation and in cancer has been suggested. In this work, we report that mice with increased availability of vitamin D display greater immune-dependent resistance to transplantable cancers and augmented responses to checkpoint blockade immunotherapies. Similarly, in humans, vitamin D-induced genes correlate with improved responses to immune checkpoint inhibitor treatment as well as with immunity to cancer and increased overall survival. In mice, resistance is attributable to the activity of vitamin D on intestinal epithelial cells, which alters microbiome composition in favor of Bacteroides fragilis, which positively regulates cancer immunity. Our findings indicate a previously unappreciated connection between vitamin D, microbial commensal communities, and immune responses to cancer. Collectively, they highlight vitamin D levels as a potential determinant of cancer immunity and immunotherapy success.


Asunto(s)
Bacteroides fragilis , Microbioma Gastrointestinal , Inhibidores de Puntos de Control Inmunológico , Neoplasias , Vitamina D , Animales , Femenino , Humanos , Masculino , Ratones , Bacteroides fragilis/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Inmunoterapia , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Mucosa Intestinal/metabolismo , Ratones Endogámicos C57BL , Neoplasias/inmunología , Neoplasias/microbiología , Neoplasias/terapia , Vitamina D/administración & dosificación , Vitamina D/metabolismo , Dieta , Línea Celular Tumoral , Calcifediol/administración & dosificación , Calcifediol/metabolismo , Proteína de Unión a Vitamina D/genética , Proteína de Unión a Vitamina D/metabolismo
3.
Life Sci Alliance ; 7(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38316462

RESUMEN

Bidirectional interactions between the immune system and the gut microbiota are key contributors to various physiological functions. Immune-associated diseases such as cancer and autoimmunity, and efficacy of immunomodulatory therapies, have been linked to microbiome variation. Although COVID-19 infection has been shown to cause microbial dysbiosis, it remains understudied whether the inflammatory response associated with vaccination also impacts the microbiota. Here, we investigate the temporal impact of COVID-19 vaccination on the gut microbiome in healthy and immuno-compromised individuals; the latter included patients with primary immunodeficiency and cancer patients on immunomodulating therapies. We find that the gut microbiome remained remarkably stable post-vaccination irrespective of diverse immune status, vaccine response, and microbial composition spanned by the cohort. The stability is evident at all evaluated levels including diversity, phylum, species, and functional capacity. Our results indicate the resilience of the gut microbiome to host immune changes triggered by COVID-19 vaccination and suggest minimal, if any, impact on microbiome-mediated processes. These findings encourage vaccine acceptance, particularly when contrasted with the significant microbiome shifts observed during COVID-19 infection.


Asunto(s)
COVID-19 , Microbioma Gastrointestinal , Neoplasias , Humanos , Vacunas contra la COVID-19 , COVID-19/prevención & control , Vacunación
4.
Nat Protoc ; 19(3): 668-699, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38092943

RESUMEN

The human gut microbiome is a key contributor to health, and its perturbations are linked to many diseases. Small-molecule xenobiotics such as drugs, chemical pollutants and food additives can alter the microbiota composition and are now recognized as one of the main factors underlying microbiome diversity. Mapping the effects of such compounds on the gut microbiome is challenging because of the complexity of the community, anaerobic growth requirements of individual species and the large number of interactions that need to be quantitatively assessed. High-throughput screening setups offer a promising solution for probing the direct inhibitory effects of hundreds of xenobiotics on tens of anaerobic gut bacteria. When automated, such assays enable the cost-effective investigation of a wide range of compound-microbe combinations. We have developed an experimental setup and protocol that enables testing of up to 5,000 compounds on a target gut species under strict anaerobic conditions within 5 d. In addition, with minor modifications to the protocol, drug effects can be tested on microbial communities either assembled from isolates or obtained from stool samples. Experience in working in an anaerobic chamber, especially in performing delicate work with thick chamber gloves, is required for implementing this protocol. We anticipate that this protocol will accelerate the study of interactions between small molecules and the gut microbiome and provide a deeper understanding of this microbial ecosystem, which is intimately intertwined with human health.


Asunto(s)
Ecosistema , Ensayos Analíticos de Alto Rendimiento , Humanos , Anaerobiosis , Bacterias , Bacterias Anaerobias
5.
Nat Commun ; 14(1): 8348, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38129392

RESUMEN

Cheese fermentation and flavour formation are the result of complex biochemical reactions driven by the activity of multiple microorganisms. Here, we studied the roles of microbial interactions in flavour formation in a year-long Cheddar cheese making process, using a commercial starter culture containing Streptococcus thermophilus and Lactococcus strains. By using an experimental strategy whereby certain strains were left out from the starter culture, we show that S. thermophilus has a crucial role in boosting Lactococcus growth and shaping flavour compound profile. Controlled milk fermentations with systematic exclusion of single Lactococcus strains, combined with genomics, genome-scale metabolic modelling, and metatranscriptomics, indicated that S. thermophilus proteolytic activity relieves nitrogen limitation for Lactococcus and boosts de novo nucleotide biosynthesis. While S. thermophilus had large contribution to the flavour profile, Lactococcus cremoris also played a role by limiting diacetyl and acetoin formation, which otherwise results in an off-flavour when in excess. This off-flavour control could be attributed to the metabolic re-routing of citrate by L. cremoris from diacetyl and acetoin towards α-ketoglutarate. Further, closely related Lactococcus lactis strains exhibited different interaction patterns with S. thermophilus, highlighting the significance of strain specificity in cheese making. Our results highlight the crucial roles of competitive and cooperative microbial interactions in shaping cheese flavour profile.


Asunto(s)
Queso , Lactococcus lactis , Animales , Acetoína/metabolismo , Diacetil/metabolismo , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Streptococcus thermophilus/genética , Fermentación , Leche , Microbiología de Alimentos
6.
J Org Chem ; 88(23): 16270-16279, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37957832

RESUMEN

A recyclable protocol using a CeO2-nanorod catalyst for borylation of alkyl halides with B2pin2 (pin = OCMe2CMe2O) is reported. A wide range of synthetically useful alkyl boronate esters are readily obtained from primary and secondary alkyl electrophiles, including unactivated alkyl chlorides, demonstrating broad utility and functional group tolerance. Preliminary investigation revealed an involvement of in situ formed catalytically active boryl species. The catalyst can be reused for up to six runs without appreciable loss in activity. In addition, we have demonstrated the use of this recyclable catalyst for the borylation of aryl halides with B2pin2, providing valuable aryl boronate esters under neat conditions.

7.
Nat Microbiol ; 8(12): 2244-2252, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37996708

RESUMEN

Microbial communities drive global biogeochemical cycles and shape the health of plants and animals-including humans. Their structure and function are determined by ecological and environmental interactions that govern the assembly, stability and evolution of microbial communities. A widely held view is that antagonistic interactions such as competition predominate in microbial communities and are ecologically more important than synergistic interactions-for example, mutualism or commensalism. Over the past decade, however, a more nuanced picture has emerged, wherein bacteria, archaea and fungi exist within interactive networks in which they exchange essential and non-essential metabolites. These metabolic interactions profoundly impact not only the physiology, ecology and evolution of the strains involved, but are also central to the functioning of many, if not all, microbiomes. Therefore, we advocate for a balanced view of microbiome ecology that encompasses both synergistic and antagonistic interactions as key forces driving the structure and dynamics within microbial communities.


Asunto(s)
Microbiota , Animales , Humanos , Simbiosis , Bacterias/genética , Bacterias/metabolismo , Archaea
8.
Sci Adv ; 9(37): eadh4184, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37713487

RESUMEN

Cancers feature substantial intratumoral heterogeneity of genetic and phenotypically distinct lineages. Although interactions between coexisting lineages are emerging as a potential contributor to tumor evolution, the extent and nature of these interactions remain largely unknown. We postulated that tumors develop ecological interactions that sustain diversity and facilitate metastasis. Using a combination of fluorescent barcoding, mathematical modeling, metabolic analysis, and in vivo models, we show that the Allee effect, i.e., growth dependency on population size, is a feature of tumor lineages and that cooperative ecological interactions between lineages alleviate the Allee barriers to growth in a model of triple-negative breast cancer. Soluble metabolite exchange formed the basis for these cooperative interactions and catalyzed the establishment of a polyclonal community that displayed enhanced metastatic dissemination and outgrowth in xenograft models. Our results highlight interclonal metabolite exchange as a key modulator of tumor ecology and a contributing factor to overcoming Allee effect-associated growth barriers to metastasis.


Asunto(s)
Colorantes , Neoplasias de la Mama Triple Negativas , Humanos , Animales , Modelos Animales de Enfermedad , Densidad de Población
9.
J Mol Med (Berl) ; 101(11): 1379-1396, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37707557

RESUMEN

Reperfusion after acute myocardial infarction further exaggerates cardiac injury and adverse remodeling. Irrespective of cardiac cell types, loss of specifically the α isoform of the protein kinase GSK-3 is protective in chronic cardiac diseases. However, the role of GSK-3α in clinically relevant ischemia/reperfusion (I/R)-induced cardiac injury is unknown. Here, we challenged cardiomyocyte-specific conditional GSK-3α knockout (cKO) and littermate control mice with I/R injury and investigated the underlying molecular mechanism using an in vitro GSK-3α gain-of-function model in AC16 cardiomyocytes post-hypoxia/reoxygenation (H/R). Analysis revealed a significantly lower percentage of infarct area in the cKO vs. control hearts post-I/R. Consistent with in vivo findings, GSK-3α overexpression promoted AC16 cardiomyocyte death post-H/R which was accompanied by an induction of reactive oxygen species (ROS) generation. Consistently, GSK-3α gain-of-function caused mitochondrial dysfunction by significantly suppressing mitochondrial membrane potential. Transcriptomic analysis of GSK-3α overexpressing cardiomyocytes challenged with hypoxia or H/R revealed that NOD-like receptor (NLR), TNF, NF-κB, IL-17, and mitogen-activated protein kinase (MAPK) signaling pathways were among the most upregulated pathways. Glutathione and fatty acid metabolism were among the top downregulated pathways post-H/R. Together, these observations suggest that loss of cardiomyocyte-GSK-3α attenuates cardiac injury post-I/R potentially through limiting the myocardial inflammation, mitochondrial dysfunction, and metabolic derangement. Therefore, selective inhibition of GSK-3α may provide beneficial effects in I/R-induced cardiac injury and remodeling. KEY MESSAGES: GSK-3α promotes cardiac injury post-ischemia/reperfusion (I/R). GSK-3α regulates inflammatory and metabolic pathways post-hypoxia/reoxygenation (H/R). GSK-3α overexpression upregulates NOD-like receptor (NLR), TNF, NF-kB, IL-17, and MAPK signaling pathways in cardiomyocytes post-H/R. GSK-3α downregulates glutathione and fatty acid metabolic pathways in cardiomyocytes post-H/R.


Asunto(s)
Enfermedad de la Arteria Coronaria , Infarto del Miocardio , Daño por Reperfusión , Ratones , Animales , Glucógeno Sintasa Quinasa 3 , Interleucina-17/metabolismo , Miocitos Cardíacos/metabolismo , Daño por Reperfusión/metabolismo , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , FN-kappa B/metabolismo , Enfermedad de la Arteria Coronaria/metabolismo , Hipoxia/metabolismo , Reperfusión , Inflamación/metabolismo , Glutatión/metabolismo , Proteínas NLR/metabolismo , Ácidos Grasos/metabolismo , Ácidos Grasos/farmacología , Apoptosis
10.
Curr Opin Microbiol ; 75: 102363, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37542746

RESUMEN

Anaerobic and microaerophilic environments are pervasive in nature, providing essential contributions to the maintenance of human health, biogeochemical cycles and the Earth's climate. These ecological niches are characterised by low free oxygen and oxidants, or lack thereof. Under these conditions, interactions between species are essential for supporting the growth of syntrophic species and maintaining thermodynamic feasibility of anaerobic fermentation. Kinetic models provide a simplified view of complex metabolic networks, while genome-scale metabolic models and flux-balance analysis (FBA) aim to unravel these systems as a whole. The target of this review is to outline the main similarities, differences and challenges associated with kinetic and metabolic modelling, and describe state-of-the-art modelling practices for studying syntrophies in the anaerobic digestion (AD) case study.


Asunto(s)
Redes y Vías Metabólicas , Interacciones Microbianas , Humanos , Anaerobiosis , Fermentación
11.
PLoS Biol ; 21(8): e3002198, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37594988

RESUMEN

Pathogenic bacteria proliferating inside mammalian host cells need to rapidly adapt to the intracellular environment. How they achieve this and scavenge essential nutrients from the host has been an open question due to the difficulties in distinguishing between bacterial and host metabolites in situ. Here, we capitalized on the inability of mammalian cells to metabolize mannitol to develop a stable isotopic labeling approach to track Salmonella enterica metabolites during intracellular proliferation in host macrophage and epithelial cells. By measuring label incorporation into Salmonella metabolites with liquid chromatography-mass spectrometry (LC-MS), and combining it with metabolic modeling, we identify relevant carbon sources used by Salmonella, uncover routes of their metabolization, and quantify relative reaction rates in central carbon metabolism. Our results underline the importance of the Entner-Doudoroff pathway (EDP) and the phosphoenolpyruvate carboxylase for intracellularly proliferating Salmonella. More broadly, our metabolic labeling strategy opens novel avenues for understanding the metabolism of pathogens inside host cells.


Asunto(s)
Salmonella enterica , Salmonella , Animales , Carbono , Cromatografía Liquida , Isótopos , Mamíferos
12.
Mol Syst Biol ; 19(9): e11525, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37485738

RESUMEN

Multi-omics analyses are used in microbiome studies to understand molecular changes in microbial communities exposed to different conditions. However, it is not always clear how much each omics data type contributes to our understanding and whether they are concordant with each other. Here, we map the molecular response of a synthetic community of 32 human gut bacteria to three non-antibiotic drugs by using five omics layers (16S rRNA gene profiling, metagenomics, metatranscriptomics, metaproteomics and metabolomics). We find that all the omics methods with species resolution are highly consistent in estimating relative species abundances. Furthermore, different omics methods complement each other for capturing functional changes. For example, while nearly all the omics data types captured that the antipsychotic drug chlorpromazine selectively inhibits Bacteroidota representatives in the community, the metatranscriptome and metaproteome suggested that the drug induces stress responses related to protein quality control. Metabolomics revealed a decrease in oligosaccharide uptake, likely caused by Bacteroidota depletion. Our study highlights how multi-omics datasets can be utilized to reveal complex molecular responses to external perturbations in microbial communities.


Asunto(s)
Microbiota , Multiómica , Humanos , ARN Ribosómico 16S/genética , Microbiota/genética , Metabolómica/métodos , Bacterias/genética , Metagenómica/métodos
13.
PLoS One ; 18(6): e0286741, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37279202

RESUMEN

Most of the small-molecule drugs approved for the treatment of cancer over the past 40 years are based on natural compounds. Bacteria provide an extensive reservoir for the development of further anti-cancer therapeutics to meet the challenges posed by the diversity of these malignant diseases. While identifying cytotoxic compounds is often easy, achieving selective targeting of cancer cells is challenging. Here we describe a novel experimental approach (the Pioneer platform) for the identification and development of 'pioneering' bacterial variants that either show or are conduced to exhibit selective contact-independent anti-cancer cytotoxic activities. We engineered human cancer cells to secrete Colicin M that repress the growth of the bacterium Escherichia coli, while immortalised non-transformed cells were engineered to express Chloramphenicol Acetyltransferase capable of relieving the bacteriostatic effect of Chloramphenicol. Through co-culturing of E. coli with these two engineered human cell lines, we show bacterial outgrowth of DH5α E. coli is constrained by the combination of negative and positive selection pressures. This result supports the potential for this approach to screen or adaptively evolve 'pioneering' bacterial variants that can selectively eliminate the cancer cell population. Overall, the Pioneer platform demonstrates potential utility for drug discovery through multi-partner experimental evolution.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Escherichia coli/genética , Antineoplásicos/farmacología , Línea Celular , Técnicas de Cocultivo
14.
Nat Commun ; 14(1): 3292, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37369658

RESUMEN

Age-associated B cells (ABC) accumulate with age and in individuals with different immunological disorders, including cancer patients treated with immune checkpoint blockade and those with inborn errors of immunity. Here, we investigate whether ABCs from different conditions are similar and how they impact the longitudinal level of the COVID-19 vaccine response. Single-cell RNA sequencing indicates that ABCs with distinct aetiologies have common transcriptional profiles and can be categorised according to their expression of immune genes, such as the autoimmune regulator (AIRE). Furthermore, higher baseline ABC frequency correlates with decreased levels of antigen-specific memory B cells and reduced neutralising capacity against SARS-CoV-2. ABCs express high levels of the inhibitory FcγRIIB receptor and are distinctive in their ability to bind immune complexes, which could contribute to diminish vaccine responses either directly, or indirectly via enhanced clearance of immune complexed-antigen. Expansion of ABCs may, therefore, serve as a biomarker identifying individuals at risk of suboptimal responses to vaccination.


Asunto(s)
COVID-19 , Inmunidad Humoral , Humanos , Inhibidores de Puntos de Control Inmunológico , Vacunas contra la COVID-19 , COVID-19/prevención & control , SARS-CoV-2 , Vacunación , Complejo Antígeno-Anticuerpo , Anticuerpos Antivirales
15.
Life Sci Alliance ; 6(8)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37236669

RESUMEN

High conservation of the disease-associated genes between flies and humans facilitates the common use of Drosophila melanogaster to study metabolic disorders under controlled laboratory conditions. However, metabolic modeling studies are highly limited for this organism. We here report a comprehensively curated genome-scale metabolic network model of Drosophila using an orthology-based approach. The gene coverage and metabolic information of the draft model derived from a reference human model were expanded via Drosophila-specific KEGG and MetaCyc databases, with several curation steps to avoid metabolic redundancy and stoichiometric inconsistency. Furthermore, we performed literature-based curations to improve gene-reaction associations, subcellular metabolite locations, and various metabolic pathways. The performance of the resulting Drosophila model (8,230 reactions, 6,990 metabolites, and 2,388 genes), iDrosophila1 (https://github.com/SysBioGTU/iDrosophila), was assessed using flux balance analysis in comparison with the other currently available fly models leading to superior or comparable results. We also evaluated the transcriptome-based prediction capacity of iDrosophila1, where differential metabolic pathways during Parkinson's disease could be successfully elucidated. Overall, iDrosophila1 is promising to investigate system-level metabolic alterations in response to genetic and environmental perturbations.


Asunto(s)
Drosophila melanogaster , Enfermedad de Parkinson , Animales , Humanos , Drosophila melanogaster/genética , Enfermedad de Parkinson/genética , Bases de Datos Factuales , Genoma
16.
J Mol Med (Berl) ; 101(3): 311-326, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36808555

RESUMEN

Ischemia-induced metabolic remodeling plays a critical role in the pathogenesis of adverse cardiac remodeling and heart failure however, the underlying molecular mechanism is largely unknown. Here, we assess the potential roles of nicotinamide riboside kinase-2 (NRK-2), a muscle-specific protein, in ischemia-induced metabolic switch and heart failure through employing transcriptomic and metabolomic approaches in ischemic NRK-2 knockout mice. The investigations revealed NRK-2 as a novel regulator of several metabolic processes in the ischemic heart. Cardiac metabolism and mitochondrial function and fibrosis were identified as top dysregulated cellular processes in the KO hearts post-MI. Several genes linked to mitochondrial function, metabolism, and cardiomyocyte structural proteins were severely downregulated in the ischemic NRK-2 KO hearts. Analysis revealed significantly upregulated ECM-related pathways which was accompanied by the upregulation of several key cell signaling pathways including SMAD, MAPK, cGMP, integrin, and Akt in the KO heart post-MI. Metabolomic studies identified profound upregulation of metabolites mevalonic acid, 3,4-dihydroxyphenylglycol, 2-penylbutyric acid, and uridine. However, other metabolites stearic acid, 8,11,14-eicosatrienoic acid, and 2-pyrrolidinone were significantly downregulated in the ischemic KO hearts. Taken together, these findings suggest that NRK-2 promotes metabolic adaptation in the ischemic heart. The aberrant metabolism in the ischemic NRK-2 KO heart is largely driven by dysregulated cGMP and Akt and mitochondrial pathways. KEY MESSAGES: Post-myocardial infarction metabolic switch critically regulates the pathogenesis of adverse cardiac remodeling and heart failure. Here, we report NRK-2 as a novel regulator of several cellular processes including metabolism and mitochondrial function post-MI. NRK-2 deficiency leads to downregulation of genes important for mitochondrial pathway, metabolism, and cardiomyocyte structural proteins in the ischemic heart. It was accompanied by upregulation of several key cell signaling pathways including SMAD, MAPK, cGMP, integrin, and Akt and dysregulation of numerous metabolites essential for cardiac bioenergetics. Taken together, these findings suggest that NRK-2 is critical for metabolic adaptation of the ischemic heart.


Asunto(s)
Insuficiencia Cardíaca , Infarto del Miocardio , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Remodelación Ventricular/fisiología , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Ratones Noqueados
17.
Mol Syst Biol ; 19(4): e11501, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-36779294

RESUMEN

Cross-feeding is fundamental to the diversity and function of microbial communities. However, identification of cross-fed metabolites is often challenging due to the universality of metabolic and biosynthetic intermediates. Here, we use 13 C isotope tracing in peptides to elucidate cross-fed metabolites in co-cultures of Saccharomyces cerevisiae and Lactococcus lactis. The community was grown on lactose as the main carbon source with either glucose or galactose fraction of the molecule labelled with 13 C. Data analysis allowing for the possible mass-shifts yielded hundreds of peptides for which we could assign both species identity and labelling degree. The labelling pattern showed that the yeast utilized galactose and, to a lesser extent, lactic acid shared by L. lactis as carbon sources. While the yeast provided essential amino acids to the bacterium as expected, the data also uncovered a complex pattern of amino acid exchange. The identity of the cross-fed metabolites was further supported by metabolite labelling in the co-culture supernatant, and by diminished fitness of a galactose-negative yeast mutant in the community. Together, our results demonstrate the utility of 13 C-based proteomics for uncovering microbial interactions.


Asunto(s)
Galactosa , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteómica , Carbono/metabolismo , Bacterias/metabolismo
18.
J Med Chem ; 66(5): 3135-3172, 2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36812395

RESUMEN

Epidermal growth factor receptor (EGFR) is an oncogenic drug target and plays a critical role in several cellular functions including cancer cell growth, survival, proliferation, differentiation, and motility. Several small-molecule tyrosine kinase inhibitors (TKIs) and monoclonal antibodies (mAbs) have been approved for targeting intracellular and extracellular domains of EGFR, respectively. However, cancer heterogeneity, mutations in the catalytic domain of EGFR, and persistent drug resistance limited their use. Different novel modalities are gaining a position in the limelight of anti-EGFR therapeutics to overcome such limitations. The current perspective reflects upon newer modalities, importantly the molecular degraders such as PROTACs, LYTACs, AUTECs, and ATTECs, etc., beginning with a snapshot of traditional and existing anti-EGFR therapies including small molecule inhibitors, mAbs, and antibody drug conjugates (ADCs). Further, a special emphasis has been made on the design, synthesis, successful applications, state-of-the-art, and emerging future opportunities of each discussed modality.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Receptores ErbB/metabolismo , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales/farmacología , Neoplasias/tratamiento farmacológico
19.
Nat Ecol Evol ; 7(2): 196-197, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36471121
20.
Elife ; 112022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36469462

RESUMEN

How cellular metabolic state impacts cellular programs is a fundamental, unresolved question. Here, we investigated how glycolytic flux impacts embryonic development, using presomitic mesoderm (PSM) patterning as the experimental model. First, we identified fructose 1,6-bisphosphate (FBP) as an in vivo sentinel metabolite that mirrors glycolytic flux within PSM cells of post-implantation mouse embryos. We found that medium-supplementation with FBP, but not with other glycolytic metabolites, such as fructose 6-phosphate and 3-phosphoglycerate, impaired mesoderm segmentation. To genetically manipulate glycolytic flux and FBP levels, we generated a mouse model enabling the conditional overexpression of dominant active, cytoplasmic PFKFB3 (cytoPFKFB3). Overexpression of cytoPFKFB3 indeed led to increased glycolytic flux/FBP levels and caused an impairment of mesoderm segmentation, paralleled by the downregulation of Wnt-signaling, reminiscent of the effects seen upon FBP-supplementation. To probe for mechanisms underlying glycolytic flux-signaling, we performed subcellular proteome analysis and revealed that cytoPFKFB3 overexpression altered subcellular localization of certain proteins, including glycolytic enzymes, in PSM cells. Specifically, we revealed that FBP supplementation caused depletion of Pfkl and Aldoa from the nuclear-soluble fraction. Combined, we propose that FBP functions as a flux-signaling metabolite connecting glycolysis and PSM patterning, potentially through modulating subcellular protein localization.


Asunto(s)
Glucólisis , Mesodermo , Animales , Ratones , Desarrollo Embrionario , Embrión de Mamíferos/metabolismo , Vía de Señalización Wnt , Fosfotransferasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA