Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Neoplasia ; 56: 101032, 2024 10.
Artículo en Inglés | MEDLINE | ID: mdl-39033689

RESUMEN

Prostate cancer (PCa) is the second most common cancer diagnosed in men. While radical prostatectomy and radiotherapy are often successful in treating localised disease, post-treatment recurrence is common. As the androgen receptor (AR) and androgen hormones play an essential role in prostate carcinogenesis and progression, androgen deprivation therapy (ADT) is often used to deprive PCa cells of the pro-proliferative effect of androgens. ADTs act by either blocking androgen biosynthesis (e.g. abiraterone) or blocking AR function (e.g. bicalutamide, enzalutamide, apalutamide, darolutamide). ADT is often effective in initially suppressing PCa growth and progression, yet emergence of castrate-resistant PCa and progression to neuroendocrine-like PCa following ADT are major clinical challenges. For this reason, there is an urgent need to identify novel approaches to modulate androgen signalling to impede PCa progression whilst also preventing or delaying therapy resistance. The mechanistic convergence of androgen and epitranscriptomic signalling offers a potential novel approach to treat PCa. The epitranscriptome involves covalent modifications of mRNA, notably, in the context of this review, the N(6)-methyladenosine (m6A) modification. m6A is involved in the regulation of mRNA splicing, stability, and translation, and has recently been shown to play a role in PCa and androgen signalling. The m6A modification is dynamically regulated by the METTL3-containing methyltransferase complex, and the FTO and ALKBH5 RNA demethylases. Given the need for novel approaches to treat PCa, there is significant interest in new therapies that target m6A that modulate AR expression and androgen signalling. This review critically summarises the potential benefit of such epitranscriptomic therapies for PCa patients.


Asunto(s)
Andrógenos , Epigénesis Genética , Neoplasias de la Próstata , Receptores Androgénicos , Transducción de Señal , Humanos , Masculino , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/terapia , Andrógenos/metabolismo , Receptores Androgénicos/metabolismo , Receptores Androgénicos/genética , Regulación Neoplásica de la Expresión Génica , Antagonistas de Andrógenos/uso terapéutico , Antagonistas de Andrógenos/farmacología , Transcriptoma , Animales
2.
Cancers (Basel) ; 16(10)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38792023

RESUMEN

Osteosarcoma (OSA) is the most common type of primary bone malignancy in people and dogs. Our previous molecular comparisons of canine OSA against healthy bone resulted in the identification of differentially expressed protein-expressing genes (forkhead box protein O4 (FOXO4), interferon regulatory factor 8 (IRF8), and lymphoid enhancer binding factor 1 (LEF1)). Immunohistochemistry (IHC) and H-scoring provided semi-quantitative assessment of nuclear and cytoplasmic staining alongside qualitative data to contextualise staining (n = 26 patients). FOXO4 was expressed predominantly in the cytoplasm with significantly lower nuclear H-scores. IRF8 H-scores ranged from 0 to 3 throughout the cohort in the nucleus and cytoplasm. LEF1 was expressed in all patients with significantly lower cytoplasmic staining compared to nuclear. No sex or anatomical location differences were observed. While reduced levels of FOXO4 might indicate malignancy, the weak or absent protein expression limits its primary use as diagnostic tumour marker. IRF8 and LEF1 have more potential for prognostic and diagnostic uses and facilitate further understanding of their roles within their respective molecular pathways, including Wnt/beta-catenin/LEF1 signalling and differential regulation of tumour suppressor genes. Deeper understanding of the mechanisms involved in OSA are essential contributions towards the development of novel diagnostic, prognostic, and treatment options in human and veterinary medicine contexts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA