Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(17)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39273935

RESUMEN

The Fall armyworm (FAW), Spodoptera frugiperda (J. E. Smith), is a highly destructive lepidopteran pest known for its extensive feeding on maize (Zea mays L.) and other crops, resulting in a substantial reduction in crop yields. Understanding the metabolic response of maize to FAW infestation is essential for effective pest management and crop protection. Metabolomics, a powerful analytical tool, provides insights into the dynamic changes in maize's metabolic profile in response to FAW infestation. This review synthesizes recent advancements in metabolomics research focused on elucidating maize's metabolic responses to FAW and other lepidopteran pests. It discusses the methodologies used in metabolomics studies and highlights significant findings related to the identification of specific metabolites involved in FAW defense mechanisms. Additionally, it explores the roles of various metabolites, including phytohormones, secondary metabolites, and signaling molecules, in mediating plant-FAW interactions. The review also examines potential applications of metabolomics data in developing innovative strategies for integrated pest management and breeding maize cultivars resistant to FAW by identifying key metabolites and associated metabolic pathways involved in plant-FAW interactions. To ensure global food security and maximize the potential of using metabolomics in enhancing maize resistance to FAW infestation, further research integrating metabolomics with other omics techniques and field studies is necessary.

2.
PeerJ ; 12: e17600, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948201

RESUMEN

Combining ability status of the inbred lines is crucial information for hybrid breeding program. Diallel or line × tester mating designs are frequently used to evaluate the combining ability. In the current study a modified diallel model was used, wherein the Griffing's combining ability effects were further partitioned to understand the effects due to maternal and reciprocal. To do this, eight parental lines of maize were crossed in full diallel method and the generated hybrids along with parents were phenotyped. The field data on the quantitative traits was analyzed using both Griffing's and the modified model to determine how well the parents' and the F1 hybrids combined. For each of the traits, a sizable reciprocal and maternal variance was observed. The number of kernel rows per cob variable had a ratio of additive variance to dominance variance greater than one. All other traits including grain yield had a ratio close to zero, suggesting that non-additive gene action was primarily responsible for the genetic control of most of the traits. The narrow sense heritability was low to moderate for majority of the variables, except for number of kernel rows per cob. With the help of the improved model, it was possible to choose superior parents and cross-parent pairings with accuracy. Based on the modified general combining ability effects and maternal effects, the parental line P5 was recognized as a potential female parent and P7 as a good male parent for grain yield and yield-attributing characteristics. The cross combination of P8×P1 had the highest specific combining ability effect on grain yield. P5×P6 cross had the highest reciprocal effect. The correlation analysis implies that the Griffing's general combining ability effects and specific combining ability effects were found to be less efficient in predicting F1 performance as compared to the modified model.


Asunto(s)
Fitomejoramiento , Zea mays , Zea mays/genética , Fitomejoramiento/métodos , Fenotipo , Modelos Genéticos , Herencia Materna/genética , Hibridación Genética
3.
Sci Rep ; 12(1): 20110, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36418412

RESUMEN

Fostering a culture of continuous improvement through regular monitoring of genetic trends in breeding pipelines is essential to improve efficiency and increase accountability. This is the first global study to estimate genetic trends across the International Maize and Wheat Improvement Center (CIMMYT) tropical maize breeding pipelines in eastern and southern Africa (ESA), South Asia, and Latin America over the past decade. Data from a total of 4152 advanced breeding trials and 34,813 entries, conducted at 1331 locations in 28 countries globally, were used for this study. Genetic trends for grain yield reached up to 138 kg ha-1 yr-1 in ESA, 118 kg ha-1 yr-1 South Asia and 143 kg ha-1 yr-1 in Latin America. Genetic trend was, in part, related to the extent of deployment of new breeding tools in each pipeline, strength of an extensive phenotyping network, and funding stability. Over the past decade, CIMMYT's breeding pipelines have significantly evolved, incorporating new tools/technologies to increase selection accuracy and intensity, while reducing cycle time. The first pipeline, Eastern Africa Product Profile 1a (EA-PP1a), to implement marker-assisted forward-breeding for resistance to key diseases, coupled with rapid-cycle genomic selection for drought, recorded a genetic trend of 2.46% per year highlighting the potential for deploying new tools/technologies to increase genetic gain.


Asunto(s)
Fitomejoramiento , Zea mays , Zea mays/genética , Triticum , Sequías , Grano Comestible/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA