Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Food Chem ; 452: 139565, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38759437

RESUMEN

Microgreens constitute natural-based foods with health-promoting properties mediated by the accumulation of glucosinolates (GLs) and phenolic compounds (PCs), although their bioaccessibility may limit their nutritional potential. This work subjected eight Brassicaceae microgreens to in vitro gastrointestinal digestion and large intestine fermentation before the metabolomics profiling of PCs and GLs. The application of multivariate statistics effectively discriminated among species and their interaction with in vitro digestion phases. The flavonoids associated with arugula and the aliphatic GLs related to red cabbage and cauliflower were identified as discriminant markers among microgreen species. The multi-omics integration along in vitro digestion and fermentation predicted bioaccessible markers, featuring potential candidates that may eventually be responsible for these functional foods' nutritional properties. This combined analytical and computational framework provided a promising platform to predict the nutritional metabolome-wide outcome of functional food consumption, as in the case of microgreens.


Asunto(s)
Brassicaceae , Glucosinolatos , Metabolómica , Polifenoles , Glucosinolatos/metabolismo , Glucosinolatos/análisis , Glucosinolatos/química , Polifenoles/metabolismo , Polifenoles/química , Polifenoles/análisis , Brassicaceae/metabolismo , Brassicaceae/química , Digestión , Humanos , Quimiometría , Extractos Vegetales/metabolismo , Extractos Vegetales/química
2.
Food Chem ; 439: 138231, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38113658

RESUMEN

This study aimed to determine how the addition of gellan, guar, locust bean, and xanthan gums affected the polyphenol profile of Aronia melanocarpa puree and the human gut microbiota after in vitro gastrointestinal digestion and large intestine fermentation. The different gums distinctively affected the content and bioaccessibility of phenolics in Aronia puree, as outlined by untargeted metabolomics. The addition of locust bean gum increased the levels of low-molecular-weight phenolics and phenolic acids after digestion. Gellan and guar gums enhanced phenolic acids' bioaccessibility after fermentation. Interactions between digestion products and fecal bacteria altered the composition of the microbiota, with the greatest impact of xanthan. Locust bean gum promoted the accumulation of different taxa with health-promoting properties. Our findings shed light on the added-value properties of commercial gums as food additives, promoting a distinctive increase of polyphenol bioaccessibility and shifting the gut microbiota distribution, depending on their composition and structural features.


Asunto(s)
Microbioma Gastrointestinal , Photinia , Humanos , Fermentación , Multiómica , Digestión , Fenoles/química , Polifenoles
3.
Foods ; 12(18)2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37761126

RESUMEN

Triticale-based biscuits were formulated with increasing substitution levels (i.e., 0, 25, 50, 75, and 100% w/w) of malted triticale flour (MTF). The products were analyzed for technological and nutritional characteristics, including the evaluation of the in vitro starch digestion. The results indicated that the substitution of triticale flour with MTF increased (p < 0.05) the total dietary fiber and ash contents. Total starch decreased (p < 0.05) when the level of MTF increased in the formulation, causing an increase in reducing sugars and an increase in the starch hydrolysis index and in the in vitro predicted glycemic index (pGI). The hardness and spread ratio values of biscuits decreased (p < 0.05) with increasing levels of MTF in the recipe. The lightness of doughs and biscuits decreased (p < 0.05) with increasing MTF levels. Overall, MTF could be used to formulate biscuits with higher dietary fiber content than native triticale flour and a medium to high in vitro glycemic index value as a function of the substitution level.

4.
Foods ; 12(10)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37238842

RESUMEN

Cocoa bean fermentation is carried out in different production areas following various methods. This study aimed to assess how the bacterial and fungal communities were affected by box, ground or jute fermentation methods, using high-throughput sequencing (HTS) of phylogenetic amplicons. Moreover, an evaluation of the preferable fermentation method was carried out based on the microbial dynamics observed. Box fermentation resulted in higher bacterial species diversity, while beans processed on the ground had a wider fungal community. Lactobacillus fermentum and Pichia kudriavzevii were observed in all three fermentation methods studied. Moreover, Acetobacter tropicalis dominated box fermentation and Pseudomonas fluorescens abounded in ground-fermented samples. Hanseniaspora opuntiae was the most important yeast in jute and box, while Saccharomyces cerevisiae prevailed in the box and ground fermentation. PICRUST analysis was performed to identify potential interesting pathways. In conclusion, there were noticeable differences between the three different fermentation methods. Due to its limited microbial diversity and the presence of microorganisms that guarantee good fermentation, the box method was found to be preferable. Moreover, the present study allowed us to thoroughly explore the microbiota of differently treated cocoa beans and to better understand the technological processes useful to obtain a standardized end-product.

5.
Foods ; 12(5)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36900515

RESUMEN

A multi-omics approach was adopted to investigate the impact of lactic acid fermentation and seed germination on the composition and physicochemical properties of rye doughs. Doughs were prepared with either native or germinated rye flour and fermented with Saccharomyces cerevisiae, combined or not with a sourdough starter including Limosilactobacillus fermentum, Weissella confusa and Weissella cibaria. LAB fermentation significantly increased total titrable acidity and dough rise regardless of the flour used. Targeted metagenomics revealed a strong impact of germination on the bacterial community profile of sprouted rye flour. Doughs made with germinated rye displayed higher levels of Latilactobacillus curvatus, while native rye doughs were associated with higher proportions of Lactoplantibacillus plantarum. The oligosaccharide profile of rye doughs indicated a lower carbohydrate content in native doughs as compared to the sprouted counterparts. Mixed fermentation promoted a consistent decrease in both monosaccharides and low-polymerization degree (PD)-oligosaccharides, but not in high-PD carbohydrates. Untargeted metabolomic analysis showed that native and germinated rye doughs differed in the relative abundance of phenolic compounds, terpenoids, and phospholipids. Sourdough fermentation promoted the accumulation of terpenoids, phenolic compounds and proteinogenic and non-proteinogenic amino acids. Present findings offer an integrated perspective on rye dough as a multi-constituent system and on cereal-sourced bioactive compounds potentially affecting the functional properties of derived food products.

6.
Compr Rev Food Sci Food Saf ; 21(2): 811-842, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35150191

RESUMEN

Sizeable scientific evidence indicates the health benefits related to phenolic compounds and dietary fiber. Various phenolic compounds-rich foods or ingredients are also rich in dietary fiber, and these two health components may interrelate via noncovalent (reversible) and covalent (mostly irreversible) interactions. Notwithstanding, these interactions are responsible for the carrier effect ascribed to fiber toward the digestive system and can modulate the bioaccessibility of phenolics, thus shaping health-promoting effects in vivo. On this basis, the present review focuses on the nature, occurrence, and implications of the interactions between phenolics and food components. Covalent and noncovalent interactions are presented, their occurrence discussed, and the effect of food processing introduced. Once reaching the large intestine, fiber-bound phenolics undergo an intense transformation by the microbial community therein, encompassing reactions such as deglycosylation, dehydroxylation, α- and ß-oxidation, dehydrogenation, demethylation, decarboxylation, C-ring fission, and cleavage to lower molecular weight phenolics. Comparatively less information is still available on the consequences on gut microbiota. So far, the very most of the information on the ability of bound phenolics to modulate gut microbiota relates to in vitro models and single strains in culture medium. Despite offering promising information, such models provide limited information about the effect on gut microbes, and future research is deemed in this field.


Asunto(s)
Microbioma Gastrointestinal , Fenoles , Fibras de la Dieta/análisis , Fibras de la Dieta/metabolismo , Manipulación de Alimentos , Fenoles/análisis
7.
Microorganisms ; 9(10)2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34683432

RESUMEN

The extensive use of antibiotics as growth promoters, or their continued abusive misuse to cure or prevent the onset of bacterial infections as occurs in the intensive farming, may have played a pivotal role in the spread of reservoirs of antibiotic resistance (AR) among food-associated bacteria including pathogens representing risks to human health. The present study compares the incidence of tetracycline and erythromycin resistances in lactic acid bacteria (LAB) and coagulase negative staphylococci (CNS) from fermented products manufacturing using meat from intensive animal husbandry (industrialized manufacturing Italian salami) and from extensive farms (artisanal sausages facilities pork and llama Argentinean sausages). A higher incidence of tetracycline resistance (TET-R) compared to erythromycin resistance (ERY-R) was observed among the 205 isolates. Unlike CNS strains, the LAB showed a significant correlation between the TET-R and the ERY-R phenotypes. Genotypic assessment shows a high correlation with tetK and tetM for the TET-R strains and with ermB and ermC for the ERY-R strains. Multiple correspondence analyses have highlighted the association between AR phenotypes and CNS species isolated from Italian salami, while the susceptible phenotypes were associated with the LAB species from Argentinean sausages. Since antibiotic resistance in meat-associated bacteria is a very complex phenomenon, the assessment of bacterial resistance in different environmental contexts with diverse farming practices and food production technologies will help in monitoring the factors influencing AR emergence and spread in animal production.

8.
FEMS Microbiol Lett ; 368(14)2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34223876

RESUMEN

Fermentation is one of if not the oldest food processing technique, yet it is still an emerging field when it comes to its numerous mechanisms of action and potential applications. The effect of microbial activity on the taste, bioavailability and preservation of the nutrients and the different food matrices has been deciphered by the insights of molecular microbiology. Among those roles of fermentation in the food chain, biopreservation remains the one most debated. Presumably because it has been underestimated for quite a while, and only considered - based on a food safety and technological approach - from the toxicological and chemical perspective. Biopreservation is not considered as a traditional use, where it has been by design - but forgotten - as the initial goal of fermentation. The 'modern' use of biopreservation is also slightly different from the traditional use, due mainly to changes in cooling of food and other ways of preservation, Extending shelf life is considered to be one of the properties of food additives, classifying - from our perspective - biopreservation wrongly and forgetting the role of fermentation and food cultures. The present review will summarize the current approaches of fermentation as a way to preserve and protect the food, considering the different way in which food cultures and this application could help tackle food waste as an additional control measure to ensure the safety of the food.


Asunto(s)
Alimentos Fermentados/microbiología , Microbiología de Alimentos , Conservación de Alimentos , Ácidos/metabolismo , Antibacterianos/metabolismo , Antifúngicos/metabolismo , Bacteriocinas/metabolismo , Fermentación , Alimentos Fermentados/análisis , Alimentos Fermentados/normas , Inocuidad de los Alimentos , Factores Asesinos de Levadura/metabolismo , Interacciones Microbianas
9.
Microorganisms ; 9(3)2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33809105

RESUMEN

Alternatives to antibiotic treatments are required owing to the ban on the use of these drugs as growth promoters in food animal production. Tributyrin appears to play a role in improving growth performance in pigs, albeit with varying degrees of effectiveness. So far, very little is known about its effects on gut microbiota composition. In this study, we investigated the gut microbiota changes of piglets receiving, at weaning, 0.2% tributyrin added to their basal diet. Microbiota composition was assessed through 16S-rRNA gene sequencing on stools collected from tributyrin and control groups. The functional profiles of microbial communities were predicted from amplicon abundance data. A comparison between dietary groups revealed that tributyrin strongly modulated gut microbiota composition in piglets, increasing the relative abundance of a number of bacterial genera such as Oscillospira, Oscillibacter, Mucispirillum and Butyrivibrio. These genera were positively correlated to animal average daily gain (ADG) and/or body weight (BW). Based on the function profile prediction, the gut microbiome of the tributyrin group possessed an enhanced potential for energy metabolism and a reduced potential for carbohydrate metabolism. In conclusion, our results indicated that tributyrin can promote changes to gut microbial communities, which could contribute to improving animal performance after weaning.

10.
PLoS One ; 16(4): e0250874, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33914832

RESUMEN

Weaning is a critical period for piglets, in which unbalanced gut microbiota and/or pathogen colonisation can contribute to diseases that interfere with animal performance. Tannins are natural compounds that could be used as functional ingredients to improve gut health in pig farming thanks to their antibacterial, antioxidant, and antidiarrhoeal properties. In this study, a mixture of quebracho and chestnut tannins (1.25%) was evaluated for its efficacy in reducing the negative weaning effects on piglet growth. Microbiota composition was assessed by Illumina MiSeq 16S rRNA gene sequencing of DNA extracted from stools at the end of the trial. Sequence analysis revealed an increase in the genera Shuttleworthia, Pseudobutyrivibrio, Peptococcus, Anaerostipes, and Solobacterium in the tannin-supplemented group. Conversely, this dietary intervention reduced the abundance of the genera Syntrophococcus, Atopobium, Mitsuokella, Sharpea, and Prevotella. The populations of butyrate-producing bacteria were modulated by tannin, and higher butyrate concentrations in stools were detected in the tannin-fed pigs. Co-occurrence analysis revealed that the operational taxonomic units (OTUs) belonging to the families Veillonellaceae, Lachnospiraceae, and Coriobacteriaceae occupied the central part of the network in both the control and the tannin-fed animals. Instead, in the tannin group, the OTUs belonging to the families Acidaminococcaceae, Alcaligenaceae, and Spirochaetaceae characterised its network, whereas Family XIII Incertae Sedis occupied a more central position than in the control group. Conversely, the presence of Desulfovibrionaceae characterised the network of the control group, and this family was not present in the network of the tannin group. Moreover, the prediction of metabolic pathways revealed that the gut microbiome of the tannin group possessed an enhanced potential for carbohydrate transport and metabolism, as well as a lower abundance of pathways related to cell wall/membrane/envelope biogenesis and inorganic ion transport. In conclusion, the tested tannins seem to modulate the gut microbiota, favouring groups of butyrate-producing bacteria.


Asunto(s)
Bacterias/genética , Butiratos/metabolismo , Nueces/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN/métodos , Taninos/administración & dosificación , Alimentación Animal/análisis , Animales , Bacterias/clasificación , Bacterias/efectos de los fármacos , Bacterias/aislamiento & purificación , ADN Bacteriano/genética , ADN Ribosómico/genética , Heces/microbiología , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Filogenia , Porcinos , Taninos/química , Taninos/farmacología , Destete
11.
Int J Food Microbiol ; 339: 109028, 2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33352462

RESUMEN

Due to their traditional use in food fermentation process for centuries, microbial food cultures are considered to have a safe history of use. A specific microbial risk assessment is therefore rarely conducted for fermented foods and their food cultures, inoculated or naturally present. Some of those food cultures have been also considered for their potential health effect as probiotic strain candidates, for which a specific safety demonstration process has been proposed by a joint expert report of FAO and WHO. The European Food Safety Authority (EFSA) Biohazard panel also provides an approach for evaluating the safety of a strain to be added in the food chain, the Qualified Presumption of Safety (QPS). Weissella confusa, former taxon Lactobacillus confusus, is a food culture characterized in the fermentation process of sourdough. Some strains have been recently proposed for their probiotic potential. The species is also documented in recent infection case reports. It is considered nevertheless to be opportunistic as underlying factors have been suggested to explain the infection. We report here the microbial risk assessment of the species, by studying a collection of 26 food and 17 clinical isolates of Weissella confusa. The phenotypic study, genomic characterization and bibliographical survey will allow us to conclude about the safety of the species and confirm its use for food fermentation and consider specific strains for demonstration of their respective health effects as probiotic candidates.


Asunto(s)
Alimentos Fermentados/microbiología , Microbiología de Alimentos , Inocuidad de los Alimentos , Weissella/fisiología , Unión Europea , Fermentación , Genómica , Probióticos , Medición de Riesgo
12.
Probiotics Antimicrob Proteins ; 13(3): 809-823, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33085038

RESUMEN

Probiotics represent a possible strategy for controlling intestinal infections in livestock. Members of the Weissella genus are increasingly being studied for health-related applications in animals and humans. Here we investigated the functional properties of two Weissella cibaria strains isolated from cows reared in Kuwait breeding facilities by combining phenotypic with genomic analyses. W. cibaria SP7 and SP19 exhibited good growth in vitro under acidic conditions and in the presence of bile salts compared to the reference probiotic Lacticaseibacillus (formerly Lactobacillus) rhamnosus GG. Both strains were able to adhere to Caco-2 and HT-29 cell lines, as well as to mucin. The cell-free supernatants of the two isolates exhibited inhibitory activity towards Escherichia coli ATCC 25,922 and Salmonella enterica UC3605, which was ultimately due to the low pH of supernatants. W. cibaria SP19 showed a co-aggregation ability similar to that of L. rhamnosus GG when incubated with S. enterica. Whole genome sequencing and analysis revealed that both strains harbored several genes involved in carbohydrate metabolism and general stress responses, indicating bacterial adaptation to the gastrointestinal environment. We also detected genes involved in the adhesion to host epithelial cells or extracellular matrix. No evidence of acquired antibiotic resistance or hemolytic activity was found in either strain. These findings shed light on the potential of W. cibaria for probiotic use in livestock and on the mechanisms underlying host-microbe interaction in the gut. W. cibaria` strain SP19 exhibited the best combination of in vitro probiotic properties and genetic markers, and is a promising candidate for further investigation.


Asunto(s)
Bovinos/microbiología , Probióticos , Weissella , Animales , Células CACO-2 , Genotipo , Células HT29 , Humanos , Kuwait , Fenotipo , Weissella/genética , Weissella/aislamiento & purificación
13.
Molecules ; 25(23)2020 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-33287261

RESUMEN

Plant polyphenols are a broad group of bioactive compounds characterized by different chemical and structural properties, low bioavailability, and several in vitro biological activities. Among these compounds, lignans (a non-flavonoid polyphenolic class found in plant foods for human nutrition) have been recently studied as potential modulators of the gut-brain axis. In particular, gut bacterial metabolism is able to convert dietary lignans into therapeutically relevant polyphenols (i.e., enterolignans), such as enterolactone and enterodiol. Enterolignans are characterized by various biologic activities, including tissue-specific estrogen receptor activation, together with anti-inflammatory and apoptotic effects. However, variation in enterolignans production by the gut microbiota is strictly related to both bioaccessibility and bioavailability of lignans through the entire gastrointestinal tract. Therefore, in this review, we summarized the most important dietary source of lignans, exploring the interesting interplay between gut metabolites, gut microbiota, and the so-called gut-brain axis.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Lignanos/química , Lignanos/metabolismo , Disponibilidad Biológica , Dieta/métodos , Tracto Gastrointestinal/metabolismo , Humanos , Fitoquímicos/química , Fitoquímicos/metabolismo , Polifenoles/química
14.
Microorganisms ; 8(9)2020 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-32927810

RESUMEN

Sourdough fermentation of bakery products is a well-established and widespread technique to confer an added value to the resulting food. In recent decades, gluten-free raw materials have gained more attention due to the diffusion of food disorders such as coeliac disease, but, at the same time, they present difficult manipulation and scarce technological properties because of the absence of gluten. For this reason, the present work was aimed at selecting starter cultures for sourdough application that are isolated from fermentation of sorghum flour. Three isolates of Lactobacillus fermentum, Weissella cibaria, and Weissella confusa were selected for the following properties: exopolysaccharide synthesis, acidification, CO2 production, and amylase activity. The investigated phenotypic characteristics were confirmed by genomic analyses, which also highlighted other potentially beneficial features for use in bakery products employment. These strains, together with bakery yeast, were used for bread preparation using sorghum and wheat flour and after 24 h of fermentation the resulting dough was analyzed to assess the improvement of its characteristics. The presence of lactic acid bacteria (LAB) had a great impact on the final dough, and the best preparation, from a rheological point of view, resulted in one made of sorghum and wheat flour with added LAB and bakery yeast, whose resulting characteristics were similar to all wheat flour doughs. The results of this study suggest a potential application of the selected starters in sorghum composite bread and should be validated with data from large-scale pilot tests conducted in industrial bakeries.

15.
Food Microbiol ; 89: 103457, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32139001

RESUMEN

Monitoring L. helveticus strain dynamics in natural whey starters is of great interest at the industrial level due to the key role that this bacterial population plays in Grana Padano cheese production. In this study, we aimed to develop a PCR-Denaturing Gradient Gel Electrophoresis (PCR-DGGE) assay based on the slpH locus, in parallel with performing culture-dependent analysis of whey samples using optimized media to maximize the number of isolated strains. We designed new primers targeting the slpH locus to amplify a gene region that would be suitable for PCR-DGGE analysis and discriminating strains. Our results confirmed that the developed PCR-DGGE method was rapid and reliable for monitoring the L. helveticus population in whey starter cultures. All sequences of bands detected in the PCR-DGGE profiles from whey samples showed high similarity to S-layer genes of L. helveticus, and perfectly matched with the slpH locus sequences of dominant strains. Overall, our findings indicated that the target region of the slpH locus was sufficiently heterologous to discriminate L. helveticus strains, and that our PCR-DGGE analysis provided a more accurate picture of the population composition of whey starters compared to culture-dependent techniques that often fail to isolate the most abundant strains.


Asunto(s)
Electroforesis en Gel de Gradiente Desnaturalizante/métodos , Lactobacillus helveticus/aislamiento & purificación , Reacción en Cadena de la Polimerasa/métodos , Suero Lácteo/microbiología , Técnicas de Tipificación Bacteriana , Queso , ADN Bacteriano/análisis , Lactobacillus helveticus/clasificación
16.
Microorganisms ; 7(12)2019 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-31861103

RESUMEN

Bacterial production of conjugated linoleic acid (CLA) has recently received great attention because of the potential health benefits of this fatty acid. Linoleic acid (LA) can be converted to CLA by several microorganisms, including bifidobacteria, possibly as a detoxification mechanism to avoid the growth inhibition effect of LA. In the present in vitro study, we investigated the gene expression landscape of the intestinal strain Bifidobacterium breve DSM 20213 when exposed to LA. Transcriptomic analysis using RNA-seq revealed that LA induced a multifactorial stress response in the test strain, including upregulation of genes involved in iron uptake and downregulation of genes involved in sugar and oligopeptide transport. We also observed reduced transcription of genes involved in membrane and pili biosynthesis. The upregulation of iron uptake was not related to any putative ability of LA to chelate Fe2+, but was somewhat linked to stress response. Furthermore, we demonstrated that LA increased reactive oxygen species (ROS) production in bacterial cells, activating an oxidative stress response. This response was proved by thioredoxin reductase transcription, and was primarily evident among bacteria cultured in the absence of cysteine. This is the first report of the potential mechanisms involved in bacterial LA transport and stress response in B. breve.

17.
Microorganisms ; 7(11)2019 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-31684185

RESUMEN

In the last decade, many authors have reported low viability for probiotic products. Investigators commonly find they are not meeting claimed active counts and/or incorrect species and/or strains have been identified. We have therefore decided to verify viability, the real dose and species correspondence in nine probiotic products (seven nutritional supplements and two medical devices) collected from the Italian and French markets claiming to contain at least one strain of L. crispatus among the different species/strain included in the formulation. In fact, the medical relevance of L. crispatus strains has recently grown., as evaluating the possible dominance clusters typical of the vaginal microbiota, the Community State Type I, the one dominated by L. crispatus, appears to be "protective" in terms of infections, fertility and gestational duration of pregnancy. The results obtained demonstrate the generally poor quality of probiotics. Out of nine products, only two definitely contained viable Lactobacilluscrispatus cells with a daily dose of at least 1 × 109 CFU/g and with an acceptable correspondence with what is declared on the label. Among these two, only one was found to be formulated with a strain (M247) that has been scientifically documented.

18.
Food Res Int ; 120: 312-321, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31000244

RESUMEN

Alfalfa seed flour (ASF) at different inclusion levels (0% as control, 30% and 45% w/w) was used to prepare rice flour-based gluten-free (GF) cookies (CK). Samples underwent a simulated in vitro digestion and fermentation process. The comprehensive changes in the phenolic profiles were evaluated during 48 h of fermentation by means of untargeted UHPLC-QTOF mass spectrometry followed by multivariate statistics. Furthermore, the modifications in microbial profile and the production of short chain fatty acids (SCFA) were investigated. Cookies presenting 30% (30-CK) and 45% (45-CK) ASF possessed the greater total phenolic content when compared to the control, being 0.42 and 0.56 mg/g versus 0.15 mg/g, respectively. The orthogonal projection to latent structure discriminant analysis, applied to untargeted metabolomics-based data, showed a clear modulation of the profile in phenolic metabolites over time (from 8 up to 48 h of in vitro fermentation). In this regard, the in vitro fermentation of 30-CK and 45-CK resulted in the maximum increase in lignans and phenolic acids, whose bioaccessibility at 24 h of in vitro fermentation was 16.2% and 12.2%, respectively. In addition, the metagenomic sequencing approach allowed to identify in Clostridiaceae, Ruminococcaceae, Lachnospiraceae and Streptococcaceae the most represented bacterial populations during the in vitro fermentation. A greater total SCFA production (p < .05) was recorded overtime for all ASF-enriched cookies when compared to the control. Therefore, ASF proved to be an excellent alternative to common non-wheat cereal flours (such as pseudocereals or legumes) for improving possible health-promoting properties in GF cookie formulation.


Asunto(s)
Harina/análisis , Intestino Grueso/metabolismo , Medicago sativa/química , Metabolómica , Metagenómica , Oryza/química , Semillas/química , Culinaria , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , Grano Comestible/química , Ácidos Grasos Volátiles/análisis , Fermentación , Microbioma Gastrointestinal , Glútenes/análisis , Lignanos/análisis , Fenoles/análisis , Polifenoles/análisis , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/aislamiento & purificación , Análisis de Secuencia de ADN
19.
BMC Genomics ; 19(1): 808, 2018 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-30404613

RESUMEN

BACKGROUND: Animal studies show that high fat (HF) diet-induced gut microbiota contributes to the development of obesity. Oil composition of high-fat diet affects metabolic inflammation differently with deleterious effects by saturated fat. The aim of the present study was to examine the diversity and metabolic capacity of the cecal bacterial community in C57BL/6 N mice administered two different diets, enriched respectively with coconut oil (HFC, high in saturated fat) or soy oil (HFS, high in polyunsaturated fat). The relative impact of each hypercaloric diet was evaluated after 2 and 8 weeks of feeding, and compared with that of a low-fat, control diet (LF). RESULTS: The HFC diet induced the same body weight gain and fat storage as the HFS diet, but produced higher plasma cholesterol levels after 8 weeks of treatment. At the same time point, the cecal microbiota of HFC diet-fed mice was characterized by an increased relative abundance of Allobaculum, Anaerofustis, F16, Lactobacillus reuteri and Deltaproteobacteria, and a decreased relative abundance of Akkermansia muciniphila compared to HFS mice. Comparison of cecal microbiota of high-fat fed mice versus control mice indicated major changes that were shared between the HFC and the HFS diet, including the increase in Lactobacillus plantarum, Lutispora, and Syntrophomonas, while some other shifts were specifically associated to either coconut or soy oil. Prediction of bacterial gene functions showed that the cecal microbiota of HFC mice was depleted of pathways involved in fatty acid metabolism, amino acid metabolism, xenobiotic degradation and metabolism of terpenoids and polyketides compared to mice on HFS diet. Correlation analysis revealed remarkable relationships between compositional changes in the cecal microbiota and alterations in the metabolic and transcriptomic phenotypes of high-fat fed mice. CONCLUSIONS: The study highlights significant differences in cecal microbiota composition and predictive functions of mice consuming a diet enriched in coconut vs soy oil. The correlations established between specific bacterial taxa and various traits linked to host lipid metabolism and energy storage give insights into the role and functioning of the gut microbiota that may contribute to diet-induced metabolic disorders.


Asunto(s)
Ciego/patología , Cocos/efectos adversos , Dieta Alta en Grasa/efectos adversos , Microbioma Gastrointestinal , Inflamación/metabolismo , Aceite de Soja/efectos adversos , Animales , Ciego/efectos de los fármacos , Ciego/microbiología , Femenino , Inflamación/etiología , Inflamación/patología , Metabolismo de los Lípidos , Ratones , Ratones Endogámicos C57BL , Microbiota
20.
Sci Rep ; 7(1): 14874, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29093509

RESUMEN

Recent evidence suggests that there is a link between the gut microbial community and immune-mediated disorders. Systemic sclerosis (SSc) is an autoimmune disease characterized by immunonological abnormalities, vascular lesions, and extensive fibrosis. Since the gastrointestinal tract is one of the organs most involved, the goal of this study was to explore the composition of the intestinal microbiota in SSc patients with (SSc/GI+) and without gastrointestinal involvement (SSc/GI-) in comparison to healthy controls (HC). The fecal bacterial composition was investigated by Illumina sequencing of 16 S rRNA gene amplicons. The fecal microbiota of SSc/GI+ subjects was characterized by higher levels of Lactobacillus, Eubacterium and Acinetobacter compared with healthy controls, and lower proportions of Roseburia, Clostridium, and Ruminococcus. The gut microbiota of SSc/GI- subjects was more similar to the microbiota of HC than to that of SSc/GI+ subjects albeit Streptococcus salivarius was over-represented in SSc/GI- fecal samples compared with both SSc/GI+ subjects and controls. Our study reveals microbial signatures of dysbiosis in the gut microbiota of SSc patients that are associated with clinical evidence of gastrointestinal disease. Further studies are needed to elucidate the potential role of these perturbations in the onset and progression of systemic sclerosis, and gastrointestinal involvement in particular.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Tracto Gastrointestinal/patología , Esclerodermia Sistémica/etiología , Adulto , Anciano , Estudios de Casos y Controles , Disbiosis , Femenino , Enfermedades Gastrointestinales/etiología , Enfermedades Gastrointestinales/microbiología , Tracto Gastrointestinal/microbiología , Humanos , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA