Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
J Biomol Struct Dyn ; 42(2): 598-614, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-36995189

RESUMEN

The hepatitis A virus (HAV), which causes hepatitis A, is a contagious liver ailment. The infections are not specifically treated by any medications. Therefore, the development of less harmful, more effective and cost-effective antiviral agents are necessary. The present work highlighted the in-silico activity of phytocompounds from tinospora cordifolia against HAV. The binding interaction of HAV with the phytocompounds was analyzed through molecular docking. Molecular docking revealed that chasmanthin, malabarolide, menispermacide, tinosporaside, and tinosporinone compounds bind with HAV more efficiently than other compounds. Further evaluation using 100 ns molecular dynamics simulation, MM/GBSA and free energy landscape indicated that all phytocompounds studied here were found to be most promising drug candidate against hepatitis A virus. Our computational study will encourage promoting in further investigation for in vitro and in vivo clinical trials.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Virus de la Hepatitis A , Tinospora , Simulación del Acoplamiento Molecular , Temperatura , Simulación de Dinámica Molecular , Fitoquímicos/farmacología
2.
J Biomol Struct Dyn ; 41(24): 14651-14664, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36856037

RESUMEN

Medicinal plants the underpinning of indigenous herbal serve, are the possible source of key compounds for the development of new drugs. Hepatitis D, one of the most widespread infectious diseases associated with global public health issues. Therefore, we aim to screen natural compounds to find out potent inhibitor towards hepatitis delta antigen. Through ADMET investigation, we have screened twenty phytochemicals for this study. Additionally, using molecular docking, these phytochemicals were docked with the HDV protease which signifies the phytochemicals beta-amyrin, chiratenol, episwertenol and swertanone have a significant capability to bind with hepatitis D virus protein. The docking study was further accompanied by analyzes RMSD, RMSF, Rg, SASA, Hbond number, and principal component analysis through 100 ns MD simulations. Based on our principal component analysis, beta-amyrin, chiratenol, episwertenol and swertanone phytochemicals can be a potential drug candidates for inhibition of hepatitis D. The above observation is also supported by our Gibbs free energy landscape study. The potential therapeutic characteristics of the phytochemicals against hepatitis D inhibition offer additional support for the in vitro and in vivo studies in future.


Asunto(s)
Hepatitis D , Swertia , Triterpenos , Humanos , Simulación del Acoplamiento Molecular , Antígenos de Hepatitis delta , Swertia/química , Simulación de Dinámica Molecular , Fitoquímicos/farmacología , Fitoquímicos/química
3.
J Biomol Struct Dyn ; 41(11): 5328-5344, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-35694813

RESUMEN

Hepatitis C virus has a major role in spreading chronic liver disease and hepatocellular carcinoma. Factors such as high costs, pharmacological side effects, and the development of drug resistance strains require the development of new and potentially effective antiviral to treat the various stages of Hepatitis C. Bioactive chemicals have been extracted from medicinal plants and are utilized by humans for the goal of maintaining a healthy lifestyle. The goal of this work is to recognize phytochemicals from Eclipta alba and assess their potentiality activity against the hepatitis C virus envelope glycoprotein using in silico approaches. Phytochemicals from Eclipta alba were virtually screened by Auto dock raccoon and 12 compounds were selected for molecular docking to probe the active binding site. The top two compounds based on the binding score like ecliptalbine and oleanolic acid with HCV E2 glycoprotein exhibit binding energy -8.88 and -8.02 kcal/mol, respectively. The chemicals' usefulness was reinforced by positive pharmacokinetic data. The phytocompounds were identified as potent HCV inhibitors based on the drug likeness and ADMET properties. Both ecliptalbine and oleanolic acid underwent molecular dynamics simulations to determine features such as RMSD, RMSF, SASA, hydrogen-bond number, and MM-PBSA-based binding free energy. From the molecular docking and molecular dynamics simulation study revealed that oleanolic acid obtained from Eclipta alba can be used as inhibitors against Hepatitis C. The identified inhibitor from our study will be study in vitro and in vivo studies to check their efficacy against Hepatitis C.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Eclipta , Hepatitis C , Ácido Oleanólico , Humanos , Simulación de Dinámica Molecular , Hepacivirus , Simulación del Acoplamiento Molecular , Ácido Oleanólico/farmacología , Fitoquímicos/farmacología , Glicoproteínas
4.
J Biomol Struct Dyn ; 41(20): 10478-10494, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36541128

RESUMEN

Due to extensive pharmacological research, medicinal plants the underpinning of indigenous herbal serve as a possible source of key compounds for the development of new drugs. Hepatitis A, one of the most widespread infectious diseases associated with global public health issues. The transmission of hepatitis A virus (HAV) occurs, through personal contact, as well as contaminated food/water. The HAV 3C cysteine protease is a non-structural protein, plays pivotal role in proliferation and viral replication. Significant phytochemicals of Pandanous fascicularis include phytosterol, kobusin, epipinoresinol, and ceroptene, which have a wide variety of biological functions. Through ADMET investigation, we have screened fifteen phytochemicals for this study. Additionally, using molecular docking, these phytochemicals were docked with the HAV 3C protease which signifies the phytochemicals phytosterol, kobusin, epipinoresinol, and ceroptene have a significant capability to bind with hepatitis A virus protein.The docking study was further accompanied by analyzes RMSD, RMSF, Rg, SASA, H-bond number, and principal component analysis through 100 ns MD simulations. The molecular dynamics study reveals that, all four phytochemicals possess considerable binding efficacy with hepatitis A virus protein. Based on our computational study and MMGBSA calculations, phytosterol, kobusin and epipinoresinol phytochemicals may be a potential drug candidate for inhibition of hepatitis A. The potential therapeutic characteristics of the phytochemicals against hepatitis A inhibition offer additional support for the in vitro and in vivo studies in future.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Hepatitis A , Fitosteroles , Humanos , Simulación de Dinámica Molecular , Simulación del Acoplamiento Molecular , Fitoquímicos/farmacología
5.
J Biomol Struct Dyn ; 40(6): 2444-2459, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-33228481

RESUMEN

Like common cold and flu, SARC-CoV-2 virus spreads by droplets of sneezes or coughs which virus affects people of various age groups. Today, this virus is almost distributed all over the world. Since binding process plays a crucial role between host and receptor, therefore, we studied the molecules intended toward inhibition process through molecular docking and molecular dynamics simulation process. From the molecular docking study, it is noteworthy that remdesivir shows better binding affinity toward the main protease of SARS-CoV2 compared to other studied drugs. Within studied phytochemicals, carnosic acid shows better binding poses toward main protease of SARS-CoV2 among studied phytochemicals. The amino acid residues GLN110 and PHE294 were almost found in all the studied interactions of drugs and phytochemicals with main protease of SARS-CoV-2. Furthermore, the results show a larger contribution of the Van der Waals energies as compared to others like electrostatic energies suggesting that ligands at the binding pocket are predominantly stabilized by hydrophobic interactions. The conformational change during ligand binding was predicted from Gibbs free energy landscape analysis through molecular dynamics simulation. We observed that, there were two main free energy basins for both docked carnosic acid complex and for docked remdesivir complex, only one main free energy basin was found in the global free energy minimum region.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Proteasas 3C de Coronavirus/metabolismo , Simulación de Dinámica Molecular , Humanos , Simulación del Acoplamiento Molecular , SARS-CoV-2
6.
J Biomol Struct Dyn ; 40(18): 8587-8601, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-33876720

RESUMEN

A protein's function is closely related to its structural properties. Mutations can affect the functionality of a protein. Different cancer tissues have found disordered expression of the cyclin-dependent kinase 2-associated Protein 1 (CDK2AP1) gene. A protein molecule's conformational flexibility affects its interaction with phytochemicals and their biological partners at various levels. Boerhavia diffusa has been investigated most extensively for its medicinal activities like anticancer properties. It contains many bioactive compounds like Boeravinone A, Boeravinone B, Boeravinone C, Boeravinone D, Boeravinone E, Boeravinone F, Boeravinone G, Boeravinone H, Boeravinone I and Boeravinone J. We have studied to analyse the binding efficacy properties as well as essential dynamic behaviour, free energy landscape of both the native and mutant protein CDK2AP1 with bioactive compounds from Boerhavia diffusa plant extracts through computational approaches by homology modelling, docking and molecular dynamics simulation. From the molecular docking study, we found that. Boeravinone J have best binding affinity (-7.9 kcal/mol) towards the native protein of CDKAP1 compared to others phytochemicals. However, we found the binding energy for H23R and C105R (mutation point) -7.8 and -7.6 kcal/mol, respectively. A single minima energy point (from 100 ns molecular dynamics simulation study) was found in the H23R mutant with Boeravinone J complex suggested that minimum structural changes with less conformational mobility compared C105A mutant model.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Nyctaginaceae , Mutación Puntual , Quinasa 2 Dependiente de la Ciclina/genética , Simulación del Acoplamiento Molecular , Proteínas Mutantes , Nyctaginaceae/química , Fitoquímicos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología
7.
J Phys Chem B ; 115(45): 13241-52, 2011 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-21974748

RESUMEN

The solvation structure and dynamics of ions in aqueous N-methylacetamide (NMA) solutions are calculated using classical molecular dynamics simulations. Our results are analyzed in terms of varying composition ranging from pure NMA to pure water. We also examined the effect of varying water content on the structure and dynamics of a neutral solute. Altogether we have simulated 38 different systems in the present work. It is found that water molecules have preference over NMA for the ions irrespective of their charge and size, whereas the neutral solute is preferably solvated by methyl groups of NMA. The calculated self-diffusion coefficient values show comparatively slower dynamics for ions than the neutral solute which can be attributed to the stronger solvation of ions in aqueous NMA mixtures. Various dynamical properties associated with translational and rotational motion of solvents are also calculated, and similar slower dynamics of solvents is observed which can be attributed to the enhanced stability of the hydrogen bonds and formation of interspecies complexes in the mixtures.


Asunto(s)
Solventes/química , Agua/química , Acetamidas/química , Enlace de Hidrógeno , Iones/química , Simulación de Dinámica Molecular
8.
J Chem Phys ; 134(15): 154506, 2011 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-21513394

RESUMEN

The structure and dynamical properties of liquid N-methylacetamides (NMA) are calculated at five different temperatures and at four different pressures using classical molecular dynamics simulations. Our results are analyzed in terms of pressure-induced changes in structural properties by investigating the radial distribution functions of different atoms in NMA molecule. It is found that the first peak and also the second peak of C-O and N-H are well defined even at higher temperature and pressure. It is also observed that the number of hydrogen bonds increase with application of pressure at a given temperature. On the other hand, the calculated hydrogen bond energy (E(HB)) shows that the stability of hydrogen bond decreases with increasing of pressure and temperature. Various dynamical properties associated with translational and rotational motion of neat NMA are calculated and the self-diffusion coefficient of NMA is found to be in excellent agreement with the experiment and the behavior is non-Arrhenius at low temperatures with application of pressures. The single particle orientational relaxation time for dipole vector and N-C vector are also calculated and it is found that the orientational relaxation time follows Arrhenius behavior with a variation of temperature and pressure.


Asunto(s)
Acetamidas/química , Simulación de Dinámica Molecular , Presión , Temperatura , Amoníaco/química , Difusión , Enlace de Hidrógeno , Metanol/química , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA