Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
ISME J ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874172

RESUMEN

Insects engage in manifold interactions with bacteria that can shift along the parasitism-mutualism continuum. However, only a small number of bacterial taxa managed to successfully colonize a wide diversity of insects, by evolving mechanisms for host-cell entry, immune evasion, germline tropism, reproductive manipulation, and/or by providing benefits to the host that stabilize the symbiotic association. Here we report on the discovery of an Enterobacterales endosymbiont (Symbiodolus, type species S. clandestinus) that is widespread across at least six insect orders and occurs at high prevalence within host populations. Fluorescence in situ hybridization in several Coleopteran and one Dipteran species revealed Symbiodolus' intracellular presence in all host life stages and across tissues, with a high abundance in female ovaries, indicating transovarial vertical transmission. Symbiont genome sequencing across 16 host taxa revealed a high degree of functional conservation in the eroding and transposon-rich genomes. All sequenced Symbiodolus genomes encode for multiple secretion systems, alongside effectors and toxin-antitoxin systems, which likely facilitate host-cell entry and interactions with the host. However, Symbiodolus-infected insects show no obvious signs of disease, and biosynthetic pathways for several amino acids and cofactors encoded by the bacterial genomes suggest that the symbionts may also be able to provide benefits to the hosts. A lack of host-symbiont cospeciation provides evidence for occasional horizontal transmission, so Symbiodolus' success is likely based on a mixed transmission mode. Our findings uncover a hitherto undescribed and widespread insect endosymbiont that may present valuable opportunities to unravel the molecular underpinnings of symbiosis establishment and maintenance.

3.
Mol Ecol ; : e17351, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38712904

RESUMEN

Lignocellulose is a major component of vascular plant biomass. Its decomposition is crucial for the terrestrial carbon cycle. Microorganisms are considered primary decomposers, but evidence increases that some invertebrates may also decompose lignocellulose. We investigated the taxonomic distribution and evolutionary origins of GH45 hydrolases, important enzymes for the decomposition of cellulose and hemicellulose, in a collection of soil invertebrate genomes. We found that these genes are common in springtails and oribatid mites. Phylogenetic analysis revealed that cellulase genes were acquired early in the evolutionary history of these groups. Domain architectures and predicted 3D enzyme structures indicate that these cellulases are functional. Patterns of presence and absence of these genes across different lineages prompt further investigation into their evolutionary and ecological benefits. The ubiquity of cellulase genes suggests that soil invertebrates may play a role in lignocellulose decomposition, independently or in synergy with microorganisms. Understanding the ecological and evolutionary implications might be crucial for understanding soil food webs and the carbon cycle.

4.
NPJ Biofilms Microbiomes ; 10(1): 34, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38555351

RESUMEN

Coconut rhinoceros beetle (CRB, Oryctes rhinoceros) is an invasive palm pest whose larvae eat wood, yet lack the necessary digestive enzymes. This study confirmed endogenous CRB cellulase is inactive, suggesting microbial fermentation. The inner lining of the CRB hindgut has tree-like structures covered with a conspicuous biofilm. To identify possible symbionts, 16 S rRNA amplicon sequencing was used on individuals from across Taiwan. Several taxa of Clostridia, an anaerobic class including many cellulolytic bacteria, were highly abundant in most individuals from all locations. Whole metagenome sequencing further confirmed many lignocellulose degrading enzymes are derived from these taxa. Analyses of eggs, larvae, adults, and soil found these cellulolytic microbes are not transmitted vertically or transstadially. The core microbiomes of the larval CRB are likely acquired and enriched from the environment with each molt, and enable efficient digestion of wood.


Asunto(s)
Escarabajos , Simbiosis , Animales , Escarabajos/genética , Escarabajos/microbiología , Larva/genética , Larva/microbiología , Pared Celular
5.
Curr Biol ; 34(8): 1621-1634.e9, 2024 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-38377997

RESUMEN

Timing the acquisition of a beneficial microbe relative to the evolutionary history of its host can shed light on the adaptive impact of a partnership. Here, we investigated the onset and molecular evolution of an obligate symbiosis between Cassidinae leaf beetles and Candidatus Stammera capleta, a γ-proteobacterium. Residing extracellularly within foregut symbiotic organs, Stammera upgrades the digestive physiology of its host by supplementing plant cell wall-degrading enzymes. We observe that Stammera is a shared symbiont across tortoise and hispine beetles that collectively comprise the Cassidinae subfamily, despite differences in their folivorous habits. In contrast to its transcriptional profile during vertical transmission, Stammera elevates the expression of genes encoding digestive enzymes while in the foregut symbiotic organs, matching the nutritional requirements of its host. Despite the widespread distribution of Stammera across Cassidinae beetles, symbiont acquisition during the Paleocene (∼62 mya) did not coincide with the origin of the subfamily. Early diverging lineages lack the symbiont and the specialized organs that house it. Reconstructing the ancestral state of host-beneficial factors revealed that Stammera encoded three digestive enzymes at the onset of symbiosis, including polygalacturonase-a pectinase that is universally shared. Although non-symbiotic cassidines encode polygalacturonase endogenously, their repertoire of plant cell wall-degrading enzymes is more limited compared with symbiotic beetles supplemented with digestive enzymes from Stammera. Highlighting the potential impact of a symbiotic condition and an upgraded metabolic potential, Stammera-harboring beetles exploit a greater variety of plants and are more speciose compared with non-symbiotic members of the Cassidinae.


Asunto(s)
Escarabajos , Simbiosis , Animales , Escarabajos/fisiología , Escarabajos/microbiología , Escarabajos/genética , Gammaproteobacteria/genética , Gammaproteobacteria/fisiología , Evolución Biológica , Evolución Molecular
6.
Arch Insect Biochem Physiol ; 114(2): 1-14, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37533217

RESUMEN

Xylophagous larvae of longhorned beetles (Coleoptera; Cerambycidae) efficiently break down polysaccharides of the plant cell wall, which make the bulk of their food, using a range of carbohydrate-active enzymes (CAZymes). In this study, we investigated the function and evolutionary history of the first identified example of insect-encoded members of glycoside hydrolase family 7 (GH7) derived from the Lamiinae Exocentrus adspersus. The genome of this beetle contained two genes encoding GH7 proteins located in tandem and flanked by transposable elements. Phylogenetic analysis revealed that the GH7 sequences of E. adspersus were closely related to those of Ascomycete fungi, suggesting that they were acquired through horizontal gene transfer (HGT) from fungi. However, they were more distantly related to those encoded by genomes of Crustacea and of protist symbionts of termites and cockroaches, supporting that the same enzyme family was recruited several times independently in Metazoa during the course of their evolution. The recombinant E. adspersus GH7 was found to primarily break down cellulose polysaccharides into cellobiose, indicating that it is a cellobiohydrolase, and could also use smaller cellulose oligomers as substrates. Additionally, the cellobiohydrolase activity was boosted by the presence of calcium chloride. Our findings suggest that the combination of GH7 cellobiohydrolases with other previously characterized endo-ß-1,4-glucanases and ß-glucosidases allows longhorned beetles like E. adspersus to efficiently break down cellulose into monomeric glucose.


Asunto(s)
Escarabajos , Animales , Escarabajos/metabolismo , Celulosa 1,4-beta-Celobiosidasa/genética , Celulosa 1,4-beta-Celobiosidasa/química , Celulosa 1,4-beta-Celobiosidasa/metabolismo , Filogenia , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Polisacáridos , Celulosa
7.
Toxins (Basel) ; 15(4)2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-37104240

RESUMEN

Predatory assassin bugs produce venomous saliva that enables them to overwhelm, kill, and pre-digest large prey animals. Venom from the posterior main gland (PMG) of the African assassin bug Psytalla horrida has strong cytotoxic effects, but the responsible compounds are yet unknown. Using cation-exchange chromatography, we fractionated PMG extracts from P. horrida and screened the fractions for toxicity. Two venom fractions strongly affected insect cell viability, bacterial growth, erythrocyte integrity, and intracellular calcium levels in Drosophila melanogaster olfactory sensory neurons. LC-MS/MS analysis revealed that both fractions contained gelsolin, redulysins, S1 family peptidases, and proteins from the uncharacterized venom protein family 2. Synthetic peptides representing the putative lytic domain of redulysins had strong antimicrobial activity against Escherichia coli and/or Bacillus subtilis but only weak toxicity towards insect or mammalian cells, indicating a primary role in preventing the intake of microbial pathogens. In contrast, a recombinant venom protein family 2 protein significantly reduced insect cell viability but exhibited no antibacterial or hemolytic activity, suggesting that it plays a role in prey overwhelming and killing. The results of our study show that P. horrida secretes multiple cytotoxic compounds targeting different organisms to facilitate predation and antimicrobial defense.


Asunto(s)
Reduviidae , Animales , Ponzoñas/química , Conducta Predatoria , Cromatografía Liquida , Drosophila melanogaster , Espectrometría de Masas en Tándem , Insectos/química , Mamíferos
8.
Insect Mol Biol ; 32(5): 469-483, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37119017

RESUMEN

With more than 36,000 species, the longhorned beetles (family Cerambycidae) are a mega-diverse lineage of mostly xylophagous insects, all of which are represented by the sole sequenced genome of the Asian longhorned beetle (Anoplophora glabripennis; Lamiinae). Their successful radiation has been linked to their ability to degrade plant cell wall components using a range of so-called plant cell wall-degrading enzymes (PCWDEs). Our previous analysis of larval gut transcriptomes demonstrated that cerambycid beetles horizontally acquired genes encoding PCWDEs from various microbial donors; these genes evolved through multiple duplication events to form gene families. To gain further insights into the evolution of these gene families during the Cerambycidae radiation, we assembled draft genomes for four beetle species belonging to three subfamilies using long-read nanopore sequencing. All the PCWDE-encoding genes we annotated from the corresponding larval gut transcriptomes were present in these draft genomes. We confirmed that the newly discovered horizontally acquired glycoside hydrolase family 7 (GH7), subfamily 26 of GH43 (GH43_26), and GH53 (all of which are absent from the A. glabripennis genome) were indeed encoded by these beetles' genome. Most of the PCWDE-encoding genes of bacterial origin gained introns after their transfer into the beetle genome. Altogether, we show that draft genome assemblies generated from nanopore long-reads offer meaningful information to the study of the evolution of gene families in insects. We anticipate that our data will support studies aiming to better understand the biology of the Cerambycidae and other beetles in general.


Asunto(s)
Escarabajos , Animales , Escarabajos/genética , Larva/genética , Secuencia de Bases , Genoma , Pared Celular/metabolismo
9.
Proc Natl Acad Sci U S A ; 119(40): e2205857119, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36161953

RESUMEN

Horizontal gene transfer (HGT) provides an evolutionary shortcut for recipient organisms to gain novel functions. Although reports of HGT in higher eukaryotes are rapidly accumulating, in most cases the evolutionary trajectory, metabolic integration, and ecological relevance of acquired genes remain unclear. Plant cell wall degradation by HGT-derived enzymes is widespread in herbivorous insect lineages. Pectin is an abundant polysaccharide in the walls of growing parts of plants. We investigated the significance of horizontally acquired pectin-digesting polygalacturonases (PGs) of the leaf beetle Phaedon cochleariae. Using a CRISPR/Cas9-guided gene knockout approach, we generated a triple knockout and a quadruple PG-null mutant in order to investigate the enzymatic, biological, and ecological effects. We found that pectin-digestion 1) is exclusively linked to the horizontally acquired PGs from fungi, 2) became fixed in the host genome by gene duplication leading to functional redundancy, 3) compensates for nutrient-poor diet by making the nutritious cell contents more accessible, and 4) facilitates the beetles development and survival. Our analysis highlights the selective advantage PGs provide to herbivorous insects and demonstrate the impact of HGT on the evolutionary success of leaf-feeding beetles, major contributors to species diversity.


Asunto(s)
Escarabajos , Transferencia de Gen Horizontal , Poligalacturonasa , Animales , Escarabajos/enzimología , Escarabajos/genética , Técnicas de Inactivación de Genes , Pectinas/metabolismo , Filogenia , Plantas/química , Poligalacturonasa/genética
10.
Mol Biol Evol ; 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35763818

RESUMEN

The rise of functional diversity through gene duplication contributed to the adaption of organisms to various environments. Here we investigate the evolution of putative cellulases of the subfamily 2 of glycoside hydrolase family 5 (GH5_2) in the Cerambycidae (longhorned beetles), a megadiverse assemblage of mostly xylophagous beetles. Cerambycidae originally acquired GH5_2 from a bacterial donor through horizontal gene transfer (HGT), and extant species harbor multiple copies that arose from gene duplication. We ask how these digestive enzymes contributed to the ability of these beetles to feed on wood. We analyzed 113 GH5_2, including the functional characterization of 52 of them, derived from 25 species covering most subfamilies of Cerambycidae. Ancestral gene duplications led to five well-defined groups with distinct substrate specificity, allowing these beetles to break down, in addition to cellulose, polysaccharides that are abundant in plant cell walls (PCWs), namely, xyloglucan, xylan, and mannans. Resurrecting the ancestral enzyme originally acquired by HGT, we show it was a cellulase that was able to break down glucomannan and xylan. Finally, recent gene duplications further expanded the catalytic repertoire of cerambycid GH5_2, giving rise to enzymes that favor transglycosylation over hydrolysis. We suggest that HGT and gene duplication, which shaped the evolution of GH5_2, played a central role in the ability of cerambycid beetles to use a PCW-rich diet and may have contributed to their successful radiation.

12.
Front Plant Sci ; 12: 660430, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34149758

RESUMEN

Plants possess various defense strategies to counter attacks from microorganisms or herbivores. For example, plants reduce the cell-wall-macerating activity of pathogen- or insect-derived polygalacturonases (PGs) by expressing PG-inhibiting proteins (PGIPs). PGs and PGIPs belong to multi-gene families believed to have been shaped by an evolutionary arms race. The mustard leaf beetle Phaedon cochleariae expresses both active PGs and catalytically inactive PG pseudoenzymes. Previous studies demonstrated that (i) PGIPs target beetle PGs and (ii) the role of PG pseudoenzymes remains elusive, despite having been linked to the pectin degradation pathway. For further insight into the interaction between plant PGIPs and beetle PG family members, we combined affinity purification with proteomics and gene expression analyses, and identified novel inhibitors of beetle PGs from Chinese cabbage (Brassica rapa ssp. pekinensis). A beetle PG pseudoenzyme was not targeted by PGIPs, but instead interacted with PGIP-like proteins. Phylogenetic analysis revealed that PGIP-like proteins clustered apart from "classical" PGIPs but together with proteins, which have been involved in developmental processes. Our results indicate that PGIP-like proteins represent not only interesting novel PG inhibitor candidates in addition to "classical" PGIPs, but also fascinating new players in the arms race between herbivorous beetles and plant defenses.

13.
J Biol Chem ; 295(33): 11833-11844, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32611768

RESUMEN

Plant cell wall-associated polygalacturonase-inhibiting proteins (PGIPs) are widely distributed in the plant kingdom. They play a crucial role in plant defense against phytopathogens by inhibiting microbial polygalacturonases (PGs). PGs hydrolyze the cell wall polysaccharide pectin and are among the first enzymes to be secreted during plant infection. Recent studies demonstrated that herbivorous insects express their own PG multi-gene families, raising the question whether PGIPs also inhibit insect PGs and protect plants from herbivores. Preliminary evidence suggested that PGIPs may negatively influence larval growth of the leaf beetle Phaedon cochleariae (Coleoptera: Chrysomelidae) and identified BrPGIP3 from Chinese cabbage (Brassica rapa ssp. pekinensis) as a candidate. PGIPs are predominantly studied in planta because their heterologous expression in microbial systems is problematic and instability and aggregation of recombinant PGIPs has complicated in vitro inhibition assays. To minimize aggregate formation, we heterologously expressed BrPGIP3 fused to a glycosylphosphatidylinositol (GPI) membrane anchor, immobilizing it on the extracellular surface of insect cells. We demonstrated that BrPGIP3_GPI inhibited several P. cochleariae PGs in vitro, providing the first direct evidence of an interaction between a plant PGIP and an animal PG. Thus, plant PGIPs not only confer resistance against phytopathogens, but may also aid in defense against herbivorous beetles.


Asunto(s)
Brassica rapa/fisiología , Escarabajos/fisiología , Herbivoria , Proteínas de Plantas/metabolismo , Animales , Brassica rapa/genética , Línea Celular , Expresión Génica , Proteínas de Insectos/metabolismo , Insecticidas/metabolismo , Proteínas de Plantas/genética , Poligalacturonasa/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
14.
Nat Commun ; 11(1): 2964, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32528063

RESUMEN

Symbiotic microbes can enable their host to access untapped nutritional resources but may also constrain niche space by promoting specialization. Here, we reconstruct functional changes in the evolutionary history of the symbiosis between a group of (semi-)aquatic herbivorous insects and mutualistic bacteria. Sequencing the symbiont genomes across 26 species of reed beetles (Chrysomelidae, Donaciinae) spanning four genera indicates that the genome-eroded mutualists provide life stage-specific benefits to larvae and adults, respectively. In the plant sap-feeding larvae, the symbionts are inferred to synthesize most of the essential amino acids as well as the B vitamin riboflavin. The adult reed beetles' folivory is likely supported by symbiont-encoded pectinases that complement the host-encoded set of cellulases, as revealed by transcriptome sequencing. However, mapping the occurrence of the symbionts' pectinase genes and the hosts' food plant preferences onto the beetles' phylogeny reveals multiple independent losses of pectinase genes in lineages that switched to feeding on pectin-poor plants, presumably constraining their hosts' subsequent adaptive potential.


Asunto(s)
Escarabajos/microbiología , Simbiosis/fisiología , Aminoácidos/metabolismo , Animales , Evolución Molecular , Femenino , Genoma Bacteriano/genética , Masculino , Filogenia , Simbiosis/genética , Vitaminas/metabolismo , Secuenciación del Exoma
15.
Curr Biol ; 30(15): 2875-2886.e4, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32502409

RESUMEN

Numerous adaptations are gained in light of a symbiotic lifestyle. Here, we investigated the obligate partnership between tortoise leaf beetles (Chrysomelidae: Cassidinae) and their pectinolytic Stammera symbionts to detail how changes to the bacterium's streamlined metabolic range can shape the digestive physiology and ecological opportunity of its herbivorous host. Comparative genomics of 13 Stammera strains revealed high functional conservation, highlighted by the universal presence of polygalacturonase, a primary pectinase targeting nature's most abundant pectic class, homogalacturonan (HG). Despite this conservation, we unexpectedly discovered a disparate distribution for rhamnogalacturonan lyase, a secondary pectinase hydrolyzing the pectic heteropolymer, rhamnogalacturonan I (RG-I). Consistent with the annotation of rhamnogalacturonan lyase in Stammera, cassidines are able to depolymerize RG-I relative to beetles whose symbionts lack the gene. Given the omnipresence of HG and RG-I in foliage, Stammera that encode pectinases targeting both substrates allow their hosts to overcome a greater diversity of plant cell wall polysaccharides and maximize access to the nutritionally rich cytosol. Possibly facilitated by their symbionts' expanded digestive range, cassidines additionally endowed with rhamnogalacturonan lyase appear to utilize a broader diversity of angiosperms than those beetles whose symbionts solely supplement polygalacturonase. Our findings highlight how symbiont metabolic diversity, in concert with host adaptations, may serve as a potential source of evolutionary innovations for herbivorous lineages.


Asunto(s)
Escarabajos/fisiología , Fenómenos Fisiológicos del Sistema Digestivo , Sistema Digestivo/microbiología , Enterobacteriaceae/fisiología , Herbivoria/fisiología , Interacciones Huésped-Parásitos/fisiología , Fenómenos Fisiológicos de las Plantas , Simbiosis/fisiología , Animales , Enterobacteriaceae/enzimología , Poligalacturonasa , Polisacárido Liasas
16.
Ecol Evol ; 10(8): 3814-3824, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32313638

RESUMEN

As fundamentally different as phytopathogenic microbes and herbivorous insects are, they enjoy plant-based diets. Hence, they encounter similar challenges to acquire nutrients. Both microbes and beetles possess polygalacturonases (PGs) that hydrolyze the plant cell wall polysaccharide pectin. Countering these threats, plant proteins inhibit PGs of microbes, thereby lowering their infection rate. Whether PG-inhibiting proteins (PGIPs) play a role in defense against herbivorous beetles is unknown. To investigate the significance of PGIPs in insect-plant interactions, feeding assays with the leaf beetle Phaedon cochleariae on Arabidopsis thaliana pgip mutants were performed. Fitness was increased when larvae were fed on mutant plants compared to wild-type plants. Moreover, PG activity was higher, although PG genes were downregulated in larvae fed on PGIP-deficient plants, strongly suggesting that PGIPs impair PG activity. As low PG activity resulted in delayed larval growth, our data provide the first in vivo correlative evidence that PGIPs act as defense against insects.

17.
Chembiochem ; 21(10): 1517-1525, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-31850611

RESUMEN

Xylophagous long-horned beetles thrive in challenging environments. To access nutrients, they secrete plant-cell-wall-degrading enzymes in their gut fluid; among them are cellulases of the subfamily 2 of glycoside hydrolase family 5 (GH5_2). Recently, we discovered that several beetle-derived GH5_2s use xylan as a substrate instead of cellulose, which is unusual for this family of enzymes. Here, we analyze the substrate specificity of a GH5_2 xylanase from the beetle Apriona japonica (AJAGH5_2-1) using commercially available substrates and synthetic arabinoxylan oligo- and polysaccharides. We demonstrate that AJAGH5_2-1 processes arabinoxylan polysaccharides in a manner distinct from classical xylanase families such as GH10 and GH11. AJAGH5_2-1 is active on long oligosaccharides and cleaves at the non-reducing end of a substituted xylose residue (position +1) only if: 1) three xylose residues are present upstream and downstream of the cleavage site, and 2) xylose residues at positions -1, -2, +2 and +3 are not substituted.


Asunto(s)
Pared Celular/metabolismo , Escarabajos/enzimología , Endo-1,4-beta Xilanasas/metabolismo , Oligosacáridos/metabolismo , Polisacáridos/metabolismo , Xilanos/metabolismo , Animales , Endo-1,4-beta Xilanasas/química , Endo-1,4-beta Xilanasas/clasificación , Especificidad por Sustrato
18.
Arch Insect Biochem Physiol ; 103(4): e21647, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31789444

RESUMEN

Herbivorous insects have more difficulty obtaining proteins from their food than do predators and parasites. The scarcity of proteins in their diet requires herbivores to feed voraciously, thus heavily damaging their host plants. Plants respond to herbivory by producing defense compounds, which reduce insect growth, retard development, and increase mortality. Herbivores use both pre- and postdigestive response mechanisms to detect and avoid plant defense compounds. Proteinase inhibitors (PIs) are one example of plant compounds produced as a direct defense against herbivory. Many insects can adapt to PIs when these are incorporated into artificial diets. However, little is known about the effect of PIs on diet choice and feeding behavior. We monitored the diet choice, life-history traits, and gut proteinase activity of Helicoverpa armigera larvae using diets supplemented with synthetic and natural PIs. In choice experiments, both neonates and fourth-instar larvae preferred the control diet over PI-supplemented diets, to varying degrees. Larvae that fed on PI-supplemented diets weighed less than those that fed on the control diet and produced smaller pupae. Trypsin-specific PIs had a stronger effect on mean larval weight than did other PIs. A reduction of trypsin activity but not of chymotrypsin activity was observed in larvae fed on PI-supplemented diets. Therefore, behavioral avoidance of feeding on plant parts high in PIs could be an adaptation to minimize the impact of this plant's defensive strategy.


Asunto(s)
Proteínas de Insectos/metabolismo , Rasgos de la Historia de Vida , Mariposas Nocturnas/fisiología , Péptido Hidrolasas/metabolismo , Inhibidores de Proteasas/farmacología , Alimentación Animal/análisis , Animales , Dieta , Larva/crecimiento & desarrollo , Larva/fisiología , Mariposas Nocturnas/crecimiento & desarrollo , Inhibidores de Proteasas/química
19.
Insect Biochem Mol Biol ; 113: 103212, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31425853

RESUMEN

Larvae of the leaf beetle Phaedon cochleariae synthesize the iridoid chysomelidial via the mevalonate pathway to repel predators. The normal terpenoid biosynthesis is integrated into the dedicated defensive pathway by the ω-hydroxylation of geraniol to (2E,6E)-2,6-dimethylocta-2,6-diene-1,8-diol (ω-OH-geraniol). Here we identify and characterize the P450 monooxygenase CYP6BH5 as the geraniol hydroxylase using integrated transcriptomics, proteomics and RNA interference (RNAi). In the fat body, 73 cytochrome P450s were identified, and CYP6BH5 was among those that were expressed specifically in fat body. Double stranded RNA mediated knockdown of CYP6BH5 led to a significant reduction of ω-hydroxygeraniol glucoside in the hemolymph and, later, of the chrysomelidial in the defensive secretion. Heterologously expressed CYP6BH5 converted geraniol to ω-OH-geraniol. In addition to geraniol, CYP6BH5 also catalyzes hydroxylation of other monoterpenols, such as nerol and citronellol to the corresponding α,ω-dihydroxy compounds.


Asunto(s)
Monoterpenos Acíclicos/metabolismo , Escarabajos/genética , Sistema Enzimático del Citocromo P-450/genética , Proteínas de Insectos/genética , Terpenos/metabolismo , Animales , Escarabajos/enzimología , Escarabajos/crecimiento & desarrollo , Sistema Enzimático del Citocromo P-450/metabolismo , Hidroxilación , Proteínas de Insectos/metabolismo , Iridoides/metabolismo , Larva/enzimología , Larva/genética
20.
Front Physiol ; 10: 685, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31191365

RESUMEN

Many protein families harbor pseudoenzymes that have lost the catalytic function of their enzymatically active counterparts. Assigning alternative function and importance to these proteins is challenging. Because the evolution toward pseudoenzymes is driven by gene duplication, they often accumulate in multigene families. Plant cell wall-degrading enzymes (PCWDEs) are prominent examples of expanded gene families. The pectolytic glycoside hydrolase family 28 (GH28) allows herbivorous insects to break down the PCW polysaccharide pectin. GH28 in the Phytophaga clade of beetles contains many active enzymes but also many inactive counterparts. Using functional characterization, gene silencing, global transcriptome analyses, and recordings of life history traits, we found that not only catalytically active but also inactive GH28 proteins are part of the same pectin-digesting pathway. The robustness and plasticity of this pathway and thus its importance for the beetle is supported by extremely high steady-state expression levels and counter-regulatory mechanisms. Unexpectedly, the impact of pseudoenzymes on the pectin-digesting pathway in Phytophaga beetles exceeds even the influence of their active counterparts, such as a lowered efficiency of food-to-energy conversion and a prolongation of the developmental period.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA