Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
J Mol Model ; 28(5): 128, 2022 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-35461388

RESUMEN

In COVID-19 infection, the SARS-CoV-2 spike protein S1 interacts to the ACE2 receptor of human host, instigating the viral infection. To examine the competitive inhibitor efficacy of broad spectrum alpha helical AMPs extracted from frog skin, a comparative study of intermolecular interactions between viral S1 and AMPs was performed relative to S1-ACE2p interactions. The ACE2 binding region with S1 was extracted as ACE2p from the complex for ease of computation. Surprisingly, the Spike-Dermaseptin-S9 complex had more intermolecular interactions than the other peptide complexes and importantly, the S1-ACE2p complex. We observed how atomic displacements in docked complexes impacted structural integrity of a receptor-binding domain in S1 through conformational sampling analysis. Notably, this geometry-based sampling approach confers the robust interactions that endure in S1-Dermaseptin-S9 complex, demonstrating its conformational transition. Additionally, QM calculations revealed that the global hardness to resist chemical perturbations was found more in Dermaseptin-S9 compared to ACE2p. Moreover, the conventional MD through PCA and the torsional angle analyses indicated that Dermaseptin-S9 altered the conformations of S1 considerably. Our analysis further revealed the high structural stability of S1-Dermaseptin-S9 complex and particularly, the trajectory analysis of the secondary structural elements established the alpha helical conformations to be retained in S1-Dermaseptin-S9 complex, as substantiated by SMD results. In conclusion, the functional dynamics proved to be significant for viral Spike S1 and Dermaseptin-S9 peptide when compared to ACE2p complex. Hence, Dermaseptin-S9 peptide inhibitor could be a strong candidate for therapeutic scaffold to prevent infection of SARS-CoV-2.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Péptidos Catiónicos Antimicrobianos , Tratamiento Farmacológico de COVID-19 , COVID-19 , Glicoproteína de la Espiga del Coronavirus , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/uso terapéutico , Anuros/metabolismo , COVID-19/prevención & control , Humanos , Péptidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo
2.
J Mol Model ; 27(1): 10, 2021 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-33392722

RESUMEN

Ocellatin AMPs (antimicrobial peptides) are considered to be promising alternative therapeutics to conventional antibiotics. Three-dimensional (3D) structures of ocellatin-F1 with 25 residues have been reported to be potent in terms of bacterial membrane permeability. To investigate the influence of similar ocellatin peptides with 25 residues pertaining to antimicrobial effect, ocellatin-1, K1 and S1 peptides were modelled with ocellatin-F1 as template. Comparative analyses between these peptides were carried out, using computational approaches. From the results of in silico toxicity profile, all peptides were found to be non-toxic with no haemolytic activity. Further sequence analysis, net charge, hydrophobicity and hydrophobic moment revealed the membrane permeable efficacy of ocellatin-1 peptide. Besides, the investigation of peptide electronic structures through density functional theory and quantum chemical (HOMO and LUMO) calculations predicted ocellatin-1 to be a suitable peptide, which can be used as a scaffold for therapeutics. Furthermore, the determination of structural contours such as RMSD, RMSF and Rg through trajectory analysis revealed that ocellatin-1 exhibited strong structural stability. In addition, the trajectory analysis of elements of secondary structure illustrated the alpha helical conformations to be retained in all peptides, except ocellatin-1. On the aforementioned grounds, ocellatin-1 was found to possess the important role of peptide penetration of the bacterial membrane. This study becomes significant, since it is the first time where the structural importance of ocellatin peptides were explored in detail and the therapeutic potential of ocellatin-1 as a peptide-based antimicrobial drug have been theoretically revealed.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Biología Computacional , Simulación por Computador , Secuencia de Aminoácidos , Animales , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/metabolismo , Anuros/metabolismo , Estructura Secundaria de Proteína , Análisis de Secuencia de Proteína , Piel/química
3.
Cancer Inform ; 15: 35-44, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27081308

RESUMEN

Tumor suppressor gene, STK11, encodes for serine-threonine kinase, which has a critical role in regulating cell growth and apoptosis. Mutations of the same lead to the inactivation of STK11, which eventually causes different types of cancer. In this study, we focused on identifying those driver mutations through analyzing structural variations of mutants, viz., D194N, E199K, L160P, and Y49D. Native and the mutants were analyzed to determine their geometrical deviations such as root-mean-square deviation, root-mean-square fluctuation, radius of gyration, potential energy, and solvent-accessible surface area using conformational sampling technique. Additionally, the global minimized structure of native and mutants was further analyzed to compute their intramolecular interactions and distribution of secondary structure. Subsequently, simulated thermal denaturation and docking studies were performed to determine their structural variations, which in turn alter the formation of active complex that comprises STK11, STRAD, and MO25. The deleterious effect of the mutants would result in a comparative loss of enzyme function due to variations in their binding energy pertaining to spatial conformation and flexibility. Hence, the structural variations in binding energy exhibited by the mutants, viz., D194N, E199K, L160P, and Y49D, to that of the native, consequently lead to pathogenesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA