Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
NPJ Parkinsons Dis ; 10(1): 154, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143114

RESUMEN

Movement disorders, such as Parkinson's disease, essential tremor, and dystonia, are characterized by their predominant motor symptoms, yet diseases causing abnormal movement also encompass several other symptoms, including non-motor symptoms. Here we review recent advances from studies of brain lesions, neuroimaging, and neuromodulation that provide converging evidence on symptom-specific brain networks in movement disorders. Although movement disorders have traditionally been conceptualized as disorders of the basal ganglia, cumulative data from brain lesions causing parkinsonism, tremor and dystonia have now demonstrated that this view is incomplete. Several recent studies have shown that lesions causing a given movement disorder occur in heterogeneous brain locations, but disrupt common brain networks, which appear to be specific to each motor phenotype. In addition, findings from structural and functional neuroimaging in movement disorders have demonstrated that brain abnormalities extend far beyond the brain networks associated with the motor symptoms. In fact, neuroimaging findings in each movement disorder are strongly influenced by the constellation of patients' symptoms that also seem to map to specific networks rather than individual anatomical structures or single neurotransmitters. Finally, observations from deep brain stimulation have demonstrated that clinical changes, including both symptom improvement and side effects, are dependent on the modulation of large-scale networks instead of purely local effects of the neuromodulation. Combined, this multimodal evidence suggests that symptoms in movement disorders arise from distinct brain networks, encouraging multimodal imaging studies to better characterize the underlying symptom-specific mechanisms and individually tailor treatment approaches.

2.
Br J Hosp Med (Lond) ; 85(7): 1-5, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39078897

RESUMEN

The prevalence of Parkinson's disease has rapidly increased over the last decade. This editorial discusses our current understanding of the pathophysiological basis for the condition, with a particular focus on the potential role of α-synuclein, and the consequent implications this has for both the development of new investigations and disease-modifying therapies. Specifically, the article discusses the development of a new diagnostic test for cerebrospinal fluid α-synuclein, the development of a new staging system for Parkinson's disease, which takes into account the α-synuclein, genetic and neuro-imaging status, and the results of two recently completed clinical trials, using monoclonal antibodies wherein α-synuclein is the principal target. We also discuss the increasing awareness of the importance of non-motor symptoms in Parkinson's disease including hyposmia, rapid eye movement sleep behaviour disorder, and autonomic and cognitive symptoms.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Humanos , Enfermedad de Parkinson/diagnóstico , alfa-Sinucleína/metabolismo , Biomarcadores
3.
Artículo en Inglés | MEDLINE | ID: mdl-38899557

RESUMEN

BACKGROUND: Parkinson's Disease (PD) is a progressive neurological disorder that results in potentially debilitating mobility deficits. Recently, spinal cord stimulation (SCS) has been proposed as a novel therapy for PD gait disorders. The highest levels of evidence remain limited for SCS. OBJECTIVES: In this systematic review and narrative synthesis, the literature was searched using combinations of key phrases indicating spinal cord stimulation and PD. METHODS: We included pre-clinical studies and all published clinical trials, case reports, conference abstracts as well as protocols for ongoing clinical trials. Additionally, we included trials of SCS applied to atypical parkinsonism. RESULTS: A total of 45 human studies and trials met the inclusion criteria. Based on the narrative synthesis, a number of knowledge gaps and future avenues of potential research were identified. This review demonstrated that evidence for SCS is currently not sufficient to recommend it as an evidence-based therapy for PD related gait disorders. There remain challenges and significant barriers to widespread implementation, including issues regarding patient selection, effective outcome selection, stimulation location and mode, and in programming parameter optimization. Results of early randomized controlled trials are currently pending. SCS is prone to placebo, lessebo and nocebo as well as blinding effects which may impact interpretation of outcomes, particularly when studies are underpowered. CONCLUSION: Therapies such as SCS may build on current evidence and be shown to improve specific gait features in PD. Early negative trials should be interpreted with caution, as more evidence will be required to develop effective methodologies in order to drive clinical outcomes.

4.
J Neurol Sci ; 460: 122985, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38581741

RESUMEN

OBJECTIVE: To investigate hypothalamic atrophy and its clinical correlates in multiple system atrophy (MSA) in-vivo. BACKGROUND: MSA is characterized by autonomic dysfunction and parkinsonian/cerebellar manifestations. The hypothalamus regulates autonomic and homeostatic functions and is also involved in memory and learning processes. METHODS: 11 MSA, 18 Parkinson's Disease (PD) and 18 Healthy Controls (HC) were included in this study. A validated and automated hypothalamic segmentation tool was applied to 3D-T1-weighted images acquired on a 3T MRI scanner. MSA hypothalamic volumes were compared to those of PD and HC. Furthermore, the association between hypothalamic volumes and scores of autonomic, depressive, sleep and cognitive manifestations were investigated. RESULTS: Posterior hypothalamus volume was reduced in MSA compared to controls (t = 2.105, p = 0.041) and PD (t = 2.055, p = 0.046). Total hypothalamus showed a trend towards a reduction in MSA vs controls (t = 1.676, p = 0.101). Reduced posterior hypothalamus volume correlated with worse MoCA scores in the parkinsonian (MSA + PD) group and in each group separately, but not with autonomic, sleep, or depression scores. CONCLUSIONS: In-vivo structural hypothalamic involvement may be present in MSA. Reduced posterior hypothalamus volume, which includes the mammillary bodies and lateral hypothalamus, is associated with worse cognitive functioning. Larger studies on hypothalamic involvement in MSA and its clinical correlates are needed.


Asunto(s)
Hipotálamo , Imagen por Resonancia Magnética , Atrofia de Múltiples Sistemas , Humanos , Atrofia de Múltiples Sistemas/diagnóstico por imagen , Atrofia de Múltiples Sistemas/patología , Atrofia de Múltiples Sistemas/fisiopatología , Masculino , Femenino , Hipotálamo/diagnóstico por imagen , Hipotálamo/patología , Hipotálamo/fisiopatología , Anciano , Persona de Mediana Edad , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/fisiopatología
5.
Brain Struct Funct ; 229(5): 1317-1325, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38625557

RESUMEN

The noradrenergic nucleus Locus Coeruleus (LC) is precociously involved in Alzheimer's Disease (AD) pathology, and its degeneration progresses during the course of the disease. Using Magnetic Resonance Imaging (MRI), researchers showed also in vivo in patients the disruption of LC, which can be observed both in Mild Cognitively Impaired individuals and AD demented patients. In this study, we report the results of a follow-up neuroradiological assessment, in which we evaluated the LC degeneration overtime in a group of cognitively impaired patients, submitted to MRI both at baseline and at the end of a 2.5-year follow-up. We found that a progressive LC disruption can be observed also in vivo, involving the entire nucleus and associated with clinical diagnosis. Our findings parallel neuropathological ones, which showed a continuous increase of neuronal death and volumetric atrophy within the LC with the progression of Braak's stages for neurofibrillary pathology. This supports the reliability of MRI as a tool for exploring the integrity of the central noradrenergic system in neurodegenerative disorders.


Asunto(s)
Enfermedad de Alzheimer , Progresión de la Enfermedad , Locus Coeruleus , Imagen por Resonancia Magnética , Humanos , Locus Coeruleus/diagnóstico por imagen , Locus Coeruleus/patología , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Anciano , Masculino , Femenino , Anciano de 80 o más Años , Estudios de Seguimiento , Neuroimagen/métodos , Degeneración Nerviosa/patología , Degeneración Nerviosa/diagnóstico por imagen , Atrofia/patología , Persona de Mediana Edad , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/patología
6.
Nat Med ; 30(4): 1096-1103, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38622249

RESUMEN

Prasinezumab, a monoclonal antibody that binds aggregated α-synuclein, is being investigated as a potential disease-modifying therapy in early-stage Parkinson's disease. Although in the PASADENA phase 2 study, the primary endpoint (Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS) sum of Parts I + II + III) was not met, prasinezumab-treated individuals exhibited slower progression of motor signs than placebo-treated participants (MDS-UPDRS Part III). We report here an exploratory analysis assessing whether prasinezumab showed greater benefits on motor signs progression in prespecified subgroups with faster motor progression. Prasinezumab's potential effects on disease progression were assessed in four prespecified and six exploratory subpopulations of PASADENA: use of monoamine oxidase B inhibitors at baseline (yes versus no); Hoehn and Yahr stage (2 versus 1); rapid eye movement sleep behavior disorder (yes versus no); data-driven subphenotypes (diffuse malignant versus nondiffuse malignant); age at baseline (≥60 years versus <60 years); sex (male versus female); disease duration (>12 months versus <12 months); age at diagnosis (≥60 years versus <60 years); motor subphenotypes (akinetic-rigid versus tremor-dominant); and motor subphenotypes (postural instability gait dysfunction versus tremor-dominant). In these subpopulations, the effect of prasinezumab on slowing motor signs progression (MDS-UPDRS Part III) was greater in the rapidly progressing subpopulations (for example, participants who were diffuse malignant or taking monoamine oxidase B inhibitors at baseline). This exploratory analysis suggests that, in a trial of 1-year duration, prasinezumab might reduce motor progression to a greater extent in individuals with more rapidly progressing Parkinson's disease. However, because this was a post hoc analysis, additional randomized clinical trials are needed to validate these findings.


Asunto(s)
Enfermedad de Parkinson , Humanos , Masculino , Femenino , Persona de Mediana Edad , Temblor/tratamiento farmacológico , Antiparkinsonianos/uso terapéutico , Monoaminooxidasa/uso terapéutico , Progresión de la Enfermedad
7.
Mov Disord ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38477376

RESUMEN

BACKGROUND: Using 11 C-(R)-PK11195-PET, we found increased microglia activation in isolated REM sleep behavior disorder (iRBD) patients. Their role remains to be clarified. OBJECTIVES: The objective is to assess relationships between activated microglia and progression of nigrostriatal dysfunction in iRBD. METHODS: Fifteen iRBD patients previously scanned with 11 C-(R)-PK11195 and 18 F-DOPA-PET underwent repeat 18 F-DOPA-PET after 3 years. 18 F-DOPA Ki changes from baseline were evaluated with volumes-of-interest and voxel-based analyses. RESULTS: Significant 18 F-DOPA Ki reductions were found in putamen and caudate. Reductions were larger and more widespread in patients with increased nigral microglia activation at baseline. Left nigral 11 C-(R)-PK11195 binding at baseline was a predictor of 18 F-DOPA Ki reduction in left caudate (coef = -0.0426, P = 0.016). CONCLUSIONS: Subjects with increased baseline 11 C-(R)-PK11195 binding have greater changes in nigrostriatal function, suggesting a detrimental rather than protective effect of microglial activation. Alternatively, both phenomena occur in patients with prominent nigrostriatal dysfunction without a causative link. The clinical and therapeutic implications of these findings need further elucidation. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

8.
Eur J Neurol ; 31(6): e16258, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38407533

RESUMEN

BACKGROUND: Multiple system atrophy (MSA), progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS) show a high prevalence and rapid progression of dysphagia, which is associated with reduced survival. Despite this, the evidence base for gastrostomy is poor, and the optimal frequency and outcomes of this intervention are not known. We aimed to characterise the prevalence and outcomes of gastrostomy in patients with these three atypical parkinsonian disorders. METHOD: We analysed data from the natural history and longitudinal cohorts of the PROSPECT-M-UK study with up to 60 months of follow-up from baseline. Survival post-gastrostomy was analysed using Kaplan-Meier survival curves. RESULTS: In a total of 339 patients (mean age at symptom onset 63.3 years, mean symptom duration at baseline 4.6 years), dysphagia was present in >50% across all disease groups at baseline and showed rapid progression during follow-up. Gastrostomy was recorded as recommended in 44 (13%) and performed in 21 (6.2%; MSA 7, PSP 11, CBS 3) of the total study population. Median survival post-gastrostomy was 24 months compared with 12 months where gastrostomy was recommended but not done (p = 0.008). However, this was not significant when correcting for age and duration of symptoms at the time of procedure or recommendation. CONCLUSIONS: Gastrostomy was performed relatively infrequently in this cohort despite the high prevalence of dysphagia. Survival post-gastrostomy was longer than previously reported, but further data on other outcomes and clinician and patient perspectives would help to guide use of this intervention in MSA, PSP and CBS.


Asunto(s)
Trastornos de Deglución , Gastrostomía , Atrofia de Múltiples Sistemas , Trastornos Parkinsonianos , Parálisis Supranuclear Progresiva , Humanos , Persona de Mediana Edad , Masculino , Femenino , Anciano , Estudios Longitudinales , Parálisis Supranuclear Progresiva/cirugía , Atrofia de Múltiples Sistemas/cirugía , Atrofia de Múltiples Sistemas/epidemiología , Trastornos Parkinsonianos/cirugía , Trastornos Parkinsonianos/epidemiología , Trastornos de Deglución/etiología , Trastornos de Deglución/epidemiología , Estudios de Cohortes , Resultado del Tratamiento , Progresión de la Enfermedad
9.
J Parkinsons Dis ; 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38339941

RESUMEN

Assessing imaging biomarker in the prodromal and early phases of Parkinson's disease (PD) is of great importance to ensure an early and safe diagnosis. In the last decades, imaging modalities advanced and are now able to assess many different aspects of neurodegeneration in PD. MRI sequences can measure iron content or neuromelanin. Apart from SPECT imaging with Ioflupane, more specific PET tracers to assess degeneration of the dopaminergic system are available. Furthermore, metabolic PET patterns can be used to anticipate a phenoconversion from prodromal PD to manifest PD. In this regard, it is worth mentioning that PET imaging of inflammation will gain significance. Molecular imaging of neurotransmitters like serotonin, noradrenaline and acetylcholine shed more light on non-motor symptoms. Outside of the brain, molecular imaging of the heart and gut is used to measure PD-related degeneration of the autonomous nervous system. Moreover, optical coherence tomography can noninvasively detect degeneration of retinal fibers as a potential biomarker in PD. In this review, we describe these state-of-the-art imaging modalities in early and prodromal PD and point out in how far these techniques can and will be used in the future to pave the way towards a biomarker-based staging of PD.

10.
Neuroimage ; 288: 120531, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38331333

RESUMEN

Gait is an excellent indicator of physical, emotional, and mental health. Previous studies have shown that gait impairments in ageing are common, but the neural basis of these impairments are unclear. Existing methodologies are suboptimal and novel paradigms capable of capturing neural activation related to real walking are needed. In this study, we used a hybrid PET/MR system and measured glucose metabolism related to both walking and standing with a dual-injection paradigm in a single study session. For this study, 15 healthy older adults (10 females, age range: 60.5-70.7 years) with normal cognition were recruited from the community. Each participant received an intravenous injection of [18F]-2-fluoro-2-deoxyglucose (FDG) before engaging in two distinct tasks, a static postural control task (standing) and a walking task. After each task, participants were imaged. To discern independent neural functions related to walking compared to standing, we applied a bespoke dose correction to remove the residual 18F signal of the first scan (PETSTAND) from the second scan (PETWALK) and proportional scaling to the global mean, cerebellum, or white matter (WM). Whole-brain differences in walking-elicited neural activity measured with FDG-PET were assessed using a one-sample t-test. In this study, we show that a dual-injection paradigm in healthy older adults is feasible with biologically valid findings. Our results with a dose correction and scaling to the global mean showed that walking, compared to standing, increased glucose consumption in the cuneus (Z = 7.03), the temporal gyrus (Z = 6.91) and the orbital frontal cortex (Z = 6.71). Subcortically, we observed increased glucose metabolism in the supraspinal locomotor network including the thalamus (Z = 6.55), cerebellar vermis and the brainstem (pedunculopontine/mesencephalic locomotor region). Exploratory analyses using proportional scaling to the cerebellum and WM returned similar findings. Here, we have established the feasibility and tolerability of a novel method capable of capturing neural activations related to actual walking and extended previous knowledge including the recruitment of brain regions involved in sensory processing. Our paradigm could be used to explore pathological alterations in various gait disorders.


Asunto(s)
Fluorodesoxiglucosa F18 , Neuroanatomía , Femenino , Humanos , Anciano , Persona de Mediana Edad , Marcha/fisiología , Caminata/fisiología , Tomografía de Emisión de Positrones/métodos , Glucosa/metabolismo
11.
Eur J Neurol ; 31(1): e16101, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37847229

RESUMEN

BACKGROUND: Reduced cortical acetylcholinesterase activity, as measured by 11 C-donepezil positron emission tomography (PET), has been reported in patients with isolated rapid eye movement (REM) sleep behavior disorder (iRBD). However, its progression and clinical implications have not been fully investigated. Here, we explored the relationship between longitudinal changes in brain acetylcholinesterase activity and cognitive function in iRBD. METHODS: Twelve iRBD patients underwent 11 C-donepezil PET at baseline and after 3 years. PET images were interrogated with statistical parametric mapping (SPM) and a regions of interest (ROI) approach. Clinical progression was assessed with the Movement Disorder Society-Unified Parkinson's Disease Rating Scale-Part III (MDS-UPDRS-III). Cognitive function was rated using the Mini-Mental State Examination (MMSE) and the Montreal Cognitive Assessment (MoCA). RESULTS: From baseline to follow-up, the mean 11 C-donepezil distribution volume ratio (DVR) decreased in the cortex (p = 0.006), thalamus (p = 0.013), and caudate (p = 0.013) ROI. Despite no significant changes in the group mean MMSE or MoCA scores being observed, individually, seven patients showed a decline in their scores on these cognitive tests. Subgroup analysis showed that only the subgroup of patients with a decline in cognitive scores had a significant reduction in mean cortical 11 C-donepezil DVR. CONCLUSIONS: Our results show that severity of brain cholinergic dysfunction in iRBD patients increases significantly over 3 years, and those changes are more severe in those with a decline in cognitive test scores.


Asunto(s)
Enfermedad de Parkinson , Trastorno de la Conducta del Sueño REM , Humanos , Trastorno de la Conducta del Sueño REM/psicología , Acetilcolinesterasa , Donepezilo , Encéfalo/diagnóstico por imagen
12.
Br J Neurosurg ; : 1-6, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37937771

RESUMEN

INTRODUCTION: Tremor is a disabling symptom of multiple sclerosis (MS), with limited treatment modalities. Thalamic ventral-intermediate-nucleus (VIM) deep brain stimulation (DBS) is a method of neuromodulation. We describe the long-term outcomes of our carefully selected patients who underwent VIM DBS for their MS-associated tremor. METHODS: Patients were referred from the regional neurology units. Pre-operative assessments included suitability for anesthesia, tremor quantification by the Fahn-Tolosa-Marin scores, and quality-of-life (EQ5D) measures. Exclusion criteria included prominent cerebellar symptoms such as ataxia and dysmetria, intracranial pathology such as ventriculomegaly, cerebellar plaques and thalamic abnormality, and comorbid psychiatric symptoms. Seven patients (3M:4F) underwent DBS for MS-associated tremor between September 2013 and February 2019. Mean age was 42 years (±SD 8 years). DBS was performed at a mean of 13 years (±SD 9 years) after diagnosis of MS. RESULTS: There were no postoperative surgical complications. All patients showed improvement in FTM tremor scores, by up to 61% at 6 months postoperatively. There was an improvement of 30-175% in quality-of-life scores at 6 months. Improvement of tremor and quality of life, over baseline, was sustained over a long period of follow-up (mean 26.6 months ± SD 20.7 months), including our longest duration at 72 months. CONCLUSION: With careful selection, DBS is a safe, efficacious intervention for MS-tremor and can positively impact on tremor and quality of life, with effects over a long period. As patients live longer with MS and the advent of new therapies, DBS should be considered for selected patients.

13.
Mov Disord Clin Pract ; 10(10): 1496-1506, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37868914

RESUMEN

Background: Tremor is one of the most troublesome manifestations of Parkinson's Disease (PD) and its response to dopaminergic medication is variable; an evidence-based framework of PD tremor is lacking yet needed to inform future investigations. Objective: To perform a comprehensive longitudinal analysis on the clinical characteristics, course and response to dopaminergic medication of tremor in de-novo PD. Methods: Three hundred ninety-seven participants were recruited in the Parkinson Progressive Markers Initiative, a prospective observational cohort study in early de-novo PD. Rest, postural and kinetic tremor scores were extracted from the Movement Disorders Society-Unified Parkinson's Disease Rating Scale. Progression from baseline to 7-year follow-up of rest, postural and kinetic tremor scores, and their response to in-clinic dopaminergic medication were analyzed through linear mixed-effects models adjusted for age, sex and disease duration at enrollment. A sensitivity analysis was conducted through subgroup and imputation analyses. Results: 382 (96.2%) participants showed tremor and 346 (87.2%) showed rest tremor in at least one assessment over 7 years. Off-state rest, postural and kinetic tremor scores increased significantly over time, coupled with a significant effect of dopaminergic medication in reducing tremor scores. However, at each assessment, tremor was unresponsive to in-clinic dopaminergic medication in at least 20% of participants for rest, 30% for postural and 38% for kinetic tremor. Conclusions: PD tremor is a troublesome manifestation, with increasing severity and variable response to medications. This analysis details the current clinical natural history of tremor in early-to-mid stage PD, outlining an evidence-based framework for future pathophysiological and interventional studies.

14.
Curr Alzheimer Res ; 20(4): 277-288, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37488756

RESUMEN

BACKGROUND: The integrity of Locus Coeruleus can be evaluated in vivo using specific Magnetic Resonance Imaging sequences. While this nucleus has been shown to be degenerated both in post-mortem and in vivo studies in Alzheimer's Disease, for other neurodegenerative dementias such as Dementia with Lewy Bodies this has only been shown ex-vivo. OBJECTIVE: To evaluate the integrity of the Locus Coeruleus through Magnetic Resonance Imaging in patients suffering from Dementia with Lewy Bodies and explore the possible differences with the Locus Coeruleus alterations occurring in Alzheimer's Dementia. METHODS: Eleven patients with Dementia with Lewy Bodies and 35 with Alzheimer's Dementia were recruited and underwent Locus Coeruleus Magnetic Resonance Imaging, along with 52 cognitively intact, age-matched controls. Images were analyzed applying an already developed template-based approach; Locus Coeruleus signal was expressed through the Locus Coeruleus Contrast Ratio parameter, and a locoregional analysis was performed. RESULTS: Both groups of patients showed significantly lower values of Locus Coeruleus Contrast Ratio when compared to controls. A different pattern of spatial involvement was found; patients affected by Dementia with Lewy bodies showed global and bilateral involvement of the Locus Coeruleus, whereas the alterations in Alzheimer's Dementia patients were more likely to be localized in the rostral part of the left nucleus. CONCLUSIONS: Magnetic Resonance Imaging successfully detects widespread Locus Coeruleus degeneration in patients suffering from Dementia with Lewy Bodies. Further studies, in larger cohorts and in earlier stages of the disease, are needed to better disclose the potential diagnostic and prognostic role of this neuroradiological tool.

16.
Front Neurol ; 14: 1155669, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37122303

RESUMEN

Background: Autonomic dysfunction, including gastrointestinal, cardiovascular, and urinary dysfunction, is often present in early Parkinson's Disease (PD). However, the knowledge of the longitudinal progression of these symptoms, and the connection between different autonomic domains, is limited. Furthermore, the relationship between the presence of autonomic symptoms in early-stage PD and olfactory dysfunction, a possible marker of central nervous system involvement, has not been fully investigated. Objectives: We aimed to investigate the occurrence and progression of autonomic dysfunction in recently diagnosed (< 2 years) untreated PD patients and determine any coexistence of symptoms in individual patients. We also investigated the relationship between autonomic symptoms, olfactory dysfunction, and motor impairment. Methods: Data were obtained from the Parkinson's Progression Markers Initiative (PPMI) database. Autonomic dysfunction was measured using the Scales for Outcomes in Parkinson's Disease (SCOPA-AUT). Symptom frequency and mean scores over 7 years were determined. The simultaneous occurrence of different autonomic symptoms was also examined. Finally, the relationships between SCOPA-AUT scores, olfactory dysfunction, and motor impairment were investigated using the University of Pennsylvania Smell Identification Test (UPSIT) and the Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS), respectively. Results: Follow-up data were available for 7 years for 171 PD patients and for 5 years for 136 HCs. Mean SCOPA-AUT score increased significantly from baseline to the 7-year follow-up for each autonomic domain, except for female sexual dysfunction. Most patients reported three or more autonomic symptoms. Common clusters of symptoms were composed of combinations of gastrointestinal, urinary, thermoregulatory, and sexual dysfunction. At baseline, greater SCOPA-AUT total score was associated with lower UPSIT scores (r = -0.209, p = 0.006) and with greater total MDS-UDPRS III score (r = 0.218, p = 0.004). Conclusions: Autonomic dysfunction, often with coexistence of autonomic manifestations, is common in early PD and progressively worsens over the first 7 years of disease, suggesting that these symptoms should be addressed with appropriate treatments early in the disease. The association between greater autonomic dysfunction and greater olfactory impairment, coupled with the association with more severe motor scores at baseline, indicates that patients who show more severe autonomic dysfunction could also have more severe involvement of the central nervous system at the time of diagnosis.

17.
Mov Disord ; 38(5): 796-805, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36905188

RESUMEN

BACKGROUND: Patients with Lewy body diseases exhibit variable degrees of cortical and subcortical hypometabolism. However, the underlying causes behind this progressive hypometabolism remain unresolved. Generalized synaptic degeneration may be one key contributor. OBJECTIVE: The objective of this study was to investigate whether local cortical synaptic loss is proportionally linked to the magnitude of hypometabolism in Lewy body disease. METHOD: Using in vivo positron emission tomography (PET) we investigated cerebral glucose metabolism and quantified the density of cerebral synapses, as measured with [18 F]fluorodeoxyglucose ([18 F]FDG) PET and [11 C]UCB-J, respectively. Volumes-of-interest were defined on magnetic resonance T1 scans and regional standard uptake value ratios-1 values were obtained for 14 pre-selected brain regions. Between-group comparisons were conducted at voxel-level. RESULTS: We observed regional differences in both synaptic density and cerebral glucose consumption in our cohorts of non-demented and demented patients with Parkinson's disease or dementia with Lewy bodies compared to healthy subjects. Additionally, voxel-wise comparisons showed a clear difference in cortical regions between demented patients and controls for both tracers. Importantly, our findings strongly suggested that the magnitude of reduced glucose uptake exceeded the magnitude of reduced cortical synaptic density. CONCLUSION: Here, we investigated the relationship between in vivo glucose uptake and the magnitude of synaptic density as measured using [18 F]FDG PET and [11 C]UCB-J PET in Lewy body patients. The magnitude of reduced [18 F]FDG uptake was greater than the corresponding decline in [11 C]UCB-J binding. Therefore, the progressive hypometabolism seen in Lewy body disorders cannot be fully explained by generalized synaptic degeneration. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad por Cuerpos de Lewy , Humanos , Enfermedad por Cuerpos de Lewy/diagnóstico por imagen , Enfermedad por Cuerpos de Lewy/metabolismo , Fluorodesoxiglucosa F18 , Glucosa/metabolismo , Cuerpos de Lewy/metabolismo , Tomografía de Emisión de Positrones , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo
18.
Brain ; 146(8): 3232-3242, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36975168

RESUMEN

The advent of clinical trials of disease-modifying agents for neurodegenerative disease highlights the need for evidence-based end point selection. Here we report the longitudinal PROSPECT-M-UK study of progressive supranuclear palsy (PSP), corticobasal syndrome (CBS), multiple system atrophy (MSA) and related disorders, to compare candidate clinical trial end points. In this multicentre UK study, participants were assessed with serial questionnaires, motor examination, neuropsychiatric and MRI assessments at baseline, 6 and 12 months. Participants were classified by diagnosis at baseline and study end, into Richardson syndrome, PSP-subcortical (PSP-parkinsonism and progressive gait freezing subtypes), PSP-cortical (PSP-frontal, PSP-speech and language and PSP-CBS subtypes), MSA-parkinsonism, MSA-cerebellar, CBS with and without evidence of Alzheimer's disease pathology and indeterminate syndromes. We calculated annual rate of change, with linear mixed modelling and sample sizes for clinical trials of disease-modifying agents, according to group and assessment type. Two hundred forty-three people were recruited [117 PSP, 68 CBS, 42 MSA and 16 indeterminate; 138 (56.8%) male; age at recruitment 68.7 ± 8.61 years]. One hundred and fifty-nine completed the 6-month assessment (82 PSP, 27 CBS, 40 MSA and 10 indeterminate) and 153 completed the 12-month assessment (80 PSP, 29 CBS, 35 MSA and nine indeterminate). Questionnaire, motor examination, neuropsychiatric and neuroimaging measures declined in all groups, with differences in longitudinal change between groups. Neuroimaging metrics would enable lower sample sizes to achieve equivalent power for clinical trials than cognitive and functional measures, often achieving N < 100 required for 1-year two-arm trials (with 80% power to detect 50% slowing). However, optimal outcome measures were disease-specific. In conclusion, phenotypic variance within PSP, CBS and MSA is a major challenge to clinical trial design. Our findings provide an evidence base for selection of clinical trial end points, from potential functional, cognitive, clinical or neuroimaging measures of disease progression.


Asunto(s)
Atrofia de Múltiples Sistemas , Trastornos Parkinsonianos , Parálisis Supranuclear Progresiva , Masculino , Humanos , Persona de Mediana Edad , Anciano , Femenino , Trastornos Parkinsonianos/diagnóstico por imagen , Trastornos Parkinsonianos/tratamiento farmacológico , Parálisis Supranuclear Progresiva/diagnóstico por imagen , Parálisis Supranuclear Progresiva/patología , Atrofia de Múltiples Sistemas/diagnóstico por imagen , Atrofia de Múltiples Sistemas/patología , Imagen por Resonancia Magnética , Reino Unido
19.
J Neurol ; 270(4): 2217-2229, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36680569

RESUMEN

BACKGROUND: Deep brain stimulation (DBS) is an established treatment for dystonia and tremor. However, there is no consensus about the best surgical targeting strategy in patients with concomitant tremor and dystonia. Both the thalamic ventral intermediate nucleus (VIM) and the globus pallidus pars interna (GPi) have been proposed as targets. Few cases using them together in a double-target approach have also been reported. METHODS: We reviewed the literature on this topic, summarizing results of different target choices. Additionally, we retrospectively report a case series of nine patients with sporadic dystonia and severe tremor treated with a double-target strategy at our center. Outcome measures were the Burke-Fahn-Marsden Dystonia Rating Scale (BFM) and Eq-5d scale. RESULTS: In published studies of patients with dystonia and tremor, VIM-DBS is highly effective on tremor but raise some concerns about dystonia's control, while GPi-DBS is more effective on dystonia but does not always relieve tremor. GPi + VIM-DBS shows good efficacy but is rarely reported and reserved for selected patients. In our patients, the double-target strategy obtained a significant and durable improvement in tremor, dystonia, and quality of life. Additionally, compared with a cohort of patients with tremor treated with VIM-DBS only, significantly lower frequency and intensity of VIM stimulation were required to control tremor. CONCLUSION: Our findings and published evidence seem to support the double-targeting approach as a safe and effective option in selected patients with tremor-dominant dystonia. This strategy appears to provide a more extensive control of either dystonia or tremor and may have a potential for limiting stimulation-related side effects.


Asunto(s)
Estimulación Encefálica Profunda , Distonía , Trastornos Distónicos , Humanos , Temblor/terapia , Globo Pálido/fisiología , Distonía/terapia , Calidad de Vida , Estudios Retrospectivos , Estimulación Encefálica Profunda/métodos , Trastornos Distónicos/terapia , Resultado del Tratamiento
20.
Neurobiol Aging ; 122: 12-21, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36463849

RESUMEN

Locus Coeruleus (LC) degeneration occurs early in Alzheimer's disease (AD) and this could affect several brain regions innervated by LC noradrenergic axon terminals, as these bear neuroprotective effects and modulate neurovascular coupling/neuronal activity. We used LC-sensitive Magnetic Resonance imaging (MRI) sequences enabling LC integrity quantification, and [18F]Fluorodeoxyglucose (FDG) PET, to investigate the association of LC-MRI changes with brain glucose metabolism in cognitively impaired patients (30 amnesticMCI and 13 demented ones). Fifteen cognitively intact age-matched controls (HCs) were submitted only to LC-MRI for comparison with patients. Voxel-wise regression analyses of [18F]FDG images were conducted using the LC-MRI parameters signal intensity (LCCR) and LC-belonging voxels (LCVOX). Both LCCR and LCVOX were significantly lower in patients compared to HCs, and were directly associated with [18F]FDG uptake in fronto-parietal cortical areas, mainly involving the left hemisphere (p < 0.001, kE > 100). These results suggest a possible association between LC degeneration and cortical hypometabolism in degenerative cognitive impairment with a prevalent left-hemispheric vulnerability, and that LC degeneration might be linked to large-scale functional network alteration in AD pathology.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/metabolismo , Locus Coeruleus/patología , Fluorodesoxiglucosa F18/metabolismo , Encéfalo/metabolismo , Neuroimagen , Tomografía de Emisión de Positrones/métodos , Imagen por Resonancia Magnética/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA