RESUMEN
Highly abundant proteins tend to evolve slowly (a trend called E-R anticorrelation), and a number of hypotheses have been proposed to explain this phenomenon. The misfolding avoidance hypothesis attributes the E-R anticorrelation to the abundance-dependent toxic effects of protein misfolding. To avoid these toxic effects, protein sequences (particularly those of highly expressed proteins) would be under selection to fold properly. One prediction of the misfolding avoidance hypothesis is that highly abundant proteins should exhibit high thermostability (i.e., a highly negative free energy of folding, ΔG). Thus far, only a handful of analyses have tested for a relationship between protein abundance and thermostability, producing contradictory results. These analyses have been limited by 1) the scarcity of ΔG data, 2) the fact that these data have been obtained by different laboratories and under different experimental conditions, 3) the problems associated with using proteins' melting energy (Tm) as a proxy for ΔG, and 4) the difficulty of controlling for potentially confounding variables. Here, we use computational methods to compare the free energy of folding of pairs of human-mouse orthologous proteins with different expression levels. Even though the effect size is limited, the most highly expressed ortholog is often the one with a more negative ΔG of folding, indicating that highly expressed proteins are often more thermostable.
Asunto(s)
Pliegue de Proteína , Proteínas , Animales , Humanos , Ratones , Proteínas/genética , Proteínas/metabolismoRESUMEN
Codon usage patterns are affected by both mutational biases and translational selection. The frequency at which each codon is used in the genome is directly linked to the cellular concentrations of their corresponding tRNAs. Transfer RNA abundances-as well as the abundances of other potentially relevant factors, such as RNA-binding proteins-may vary across different tissues, making it possible that genes expressed in different tissues are subject to different translational selection regimes, and thus differ in their patterns of codon usage. These differences, however, are poorly understood, having been studied only in Arabidopsis, rice and human, with controversial results in human. Drosophila melanogaster is a suitable model organism to study tissue-specific codon adaptation given its large effective population size. Here, we compare 2,046 genes, each expressed specifically in one tissue of D. melanogaster. We show that genes expressed in different tissues exhibit significant differences in their patterns of codon usage, and that these differences are only partially due to differences in GC content, expression levels, or protein lengths. Remarkably, these differences are stronger when analyses are restricted to highly expressed genes. Our results strongly suggest that genes expressed in different tissues are subject to different regimes of translational selection.
Asunto(s)
Codón , Drosophila melanogaster/genética , Expresión Génica , Adaptación Biológica , Animales , Composición de Base , Drosophila melanogaster/metabolismo , Selección GenéticaRESUMEN
Pathogens differ in their host specificities, with species infecting a unique host (specialist pathogens) and others having a wide host range (generalists). Molecular determinants of pathogen's host range remain poorly understood. Secreted proteins of generalist pathogens are expected to have a broader range of intermolecular interactions (i.e., higher promiscuity) compared with their specialist counterparts. We hypothesize that this increased promiscuity of generalist secretomes may be based on an elevated content of primitive amino acids and intrinsically disordered regions, as these features are known to increase protein flexibility and interactivity. Here, we measure the proportion of primitive amino acids and percentage of intrinsically disordered residues in secreted, membrane, and cytoplasmic proteins from pathogens with different host specificity. Supporting our prediction, there is a significant general enrichment for primitive amino acids and intrinsically disordered regions in proteins from generalists compared to specialists, particularly among secreted proteins in prokaryotes. Our findings support our hypothesis that secreted proteins' amino acid composition and disordered content influence the pathogens' host range.
RESUMEN
The common transition from out-crossing to self-fertilization in plants decreases effective population size. This is expected to result in a reduced efficacy of natural selection and in increased rates of protein evolution in selfing plants compared with their outcrossing congeners. Prior analyses, based on a very limited number of genes, detected no differences between the rates of protein evolution in the selfing Arabidopsis thaliana compared with the out-crosser Arabidopsis lyrata. Here, we reevaluate this trend using the complete genomes of A. thaliana, A. lyrata, Arabidopsis halleri, and the outgroups Capsella rubella and Thellungiella parvula. Our analyses indicate slightly but measurably higher nonsynonymous divergences (dN), synonymous divergences (dS) and dN/dS ratios in A. thaliana compared with the other Arabidopsis species, indicating that purifying selection is indeed less efficacious in A. thaliana.