Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cell ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39255801

RESUMEN

The family of Ras-like GTPases consists of over 150 different members, regulated by an even larger number of guanine exchange factors (GEFs) and GTPase-activating proteins (GAPs) that comprise cellular switch networks that govern cell motility, growth, polarity, protein trafficking, and gene expression. Efforts to develop selective small molecule probes and drugs for these proteins have been hampered by the high affinity of guanosine triphosphate (GTP) and lack of allosteric regulatory sites. This paradigm was recently challenged by the discovery of a cryptic allosteric pocket in the switch II region of K-Ras. Here, we ask whether similar pockets are present in GTPases beyond K-Ras. We systematically surveyed members of the Ras, Rho, and Rab family of GTPases and found that many GTPases exhibit targetable switch II pockets. Notable differences in the composition and conservation of key residues offer potential for the development of optimized inhibitors for many members of this previously undruggable family.

2.
ACS Chem Biol ; 17(10): 2710-2715, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36166818

RESUMEN

While there has been recent success in the development of KRasG12C inhibitors, unmet needs for selective inhibitors of KRasG12D and the remaining oncogenic KRas proteins remain. Here, we applied trifluoromethyl-containing ligands of KRas proteins as competitive probe ligands to assay the occupancy of the switch II pocket by 19F NMR spectroscopy. Structure-activity-relationship studies of probe ligands increased the sensitivity of the assay and identified structures that differentially detected each nucleotide state of KRasG12D. These differences in selectivity, combined with the high resolution of 19F NMR spectroscopy, enabled this method to be expanded to assay both nucleotide states of the protein simultaneously.


Asunto(s)
Flúor , Genes ras , Ligandos , Espectroscopía de Resonancia Magnética , Nucleótidos , Proteínas Proto-Oncogénicas p21(ras)/genética , Mutación
3.
Nat Chem Biol ; 18(6): 596-604, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35314814

RESUMEN

Current small-molecule inhibitors of KRAS(G12C) bind irreversibly in the switch-II pocket (SII-P), exploiting the strong nucleophilicity of the acquired cysteine as well as the preponderance of the GDP-bound form of this mutant. Nevertheless, many oncogenic KRAS mutants lack these two features, and it remains unknown whether targeting the SII-P is a practical therapeutic approach for KRAS mutants beyond G12C. Here we use NMR spectroscopy and a cellular KRAS engagement assay to address this question by examining a collection of SII-P ligands from the literature and from our own laboratory. We show that the SII-Ps of many KRAS hotspot (G12, G13, Q61) mutants are accessible using noncovalent ligands, and that this accessibility is not necessarily coupled to the GDP state of KRAS. The results we describe here emphasize the SII-P as a privileged drug-binding site on KRAS and unveil new therapeutic opportunities in RAS-driven cancer.


Asunto(s)
Mieloma Múltiple , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Ligandos , Mutación , Proteínas Proto-Oncogénicas p21(ras)/genética
4.
J Med Chem ; 65(4): 3119-3122, 2022 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-35167298

RESUMEN

Since its discovery as the first human oncogene in 1983, the small GTPase KRAS has been a major target of cancer drug discovery. The paper reported in this issue describes a long-awaited small molecule drug candidate of the oncogenic KRAS (G12D) mutant for the treatment of currently incurable pancreatic cancer.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogénicas p21(ras)/efectos de los fármacos , Proteínas Proto-Oncogénicas p21(ras)/genética , Alelos , Animales , Descubrimiento de Drogas , Regulación Neoplásica de la Expresión Génica , Humanos , Mutación
5.
ACS Cent Sci ; 6(10): 1753-1761, 2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33145412

RESUMEN

We report the identification of three cyclic peptide ligands of K-Ras(G12D) using an integrated in vitro translation-mRNA display selection platform. These cyclic peptides show preferential binding to the GTP-bound state of K-Ras(G12D) over the GDP-bound state and block Ras-Raf interaction. A co-crystal structure of peptide KD2 with K-Ras(G12D)·GppNHp reveals that this peptide binds in the Switch II groove region with concomitant opening of the Switch II loop and a 40° rotation of the α2 helix, and that a threonine residue (Thr10) on KD2 has direct access to the mutant aspartate (Asp12) on K-Ras. Replacing this threonine with non-natural amino acids afforded peptides with improved potency at inhibiting the interaction between Raf1-RBD and K-Ras(G12D) but not wildtype K-Ras. The union of G12D over wildtype selectivity and GTP state/GDP state selectivity is particularly desirable, considering that oncogenic K-Ras(G12D) exists predominantly in the GTP state in cancer cells, and wildtype K-Ras signaling is important for the maintenance of healthy cells.

6.
J Am Chem Soc ; 140(14): 4893-4904, 2018 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-29537835

RESUMEN

We report the formation of phosphine-ligated alkylpalladium(II) amido complexes that undergo reductive elimination to form alkyl-nitrogen bonds and a combined experimental and computational investigation of the factors controlling the rates of these reactions. The free-energy barriers to reductive elimination from t-Bu3P-ligated complexes were significantly lower (ca. 3 kcal/mol) than those previously reported from NHC-ligated complexes. The rates of reactions from complexes containing a series of electronically and sterically varied anilido ligands showed that the reductive elimination is slower from complexes of less electron-rich or more sterically hindered anilido ligands than from those containing more electron-rich and less hindered anilido ligands. Reductive elimination of alkylamines also occurred from complexes bearing bidentate P,O ligands. The rates of reactions of these four-coordinate complexes were slower than those for reactions of the three-coordinate, t-Bu3P-ligated complexes. The calculated pathway for reductive elimination from rigid, 2-methoxyarylphosphine-ligated complexes does not involve initial dissociation of the oxygen. Instead, reductive elimination is calculated to occur directly from the four-coordinate complex in concert with a lengthening of the Pd-O bond. To investigate this effect experimentally, a four-coordinate Pd(II) anilido complex containing a flexible, aliphatic linker between the P and O atoms was synthesized. Reductive elimination from this complex was faster than that from the analogous complex containing the more rigid, aryl linker. The flexible linker enables full dissociation of the ether ligand during reductive elimination, leading to the faster reaction of this complex.


Asunto(s)
Amidas/química , Carbono/química , Nitrógeno/química , Compuestos Organometálicos/química , Paladio/química , Fosfinas/química , Ligandos , Estructura Molecular , Compuestos Organometálicos/síntesis química , Oxidación-Reducción
7.
ACS Cent Sci ; 2(9): 647-652, 2016 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-27725963

RESUMEN

We report a new class of catalytic reaction: the thermal substitution of a secondary and or tertiary alkyl halide with a nitrogen nucleophile. The alkylation of a nitrogen nucleophile with an alkyl halide is a classical method for the construction of C-N bonds, but traditional substitution reactions are challenging to achieve with a secondary and or tertiary alkyl electrophile due to competing elimination reactions. A catalytic process could address this limitation, but thermal, catalytic coupling of alkyl halides with a nitrogen nucleophile and any type of catalytic coupling of an unactivated tertiary alkyl halide with a nitrogen nucleophile are unknown. We report the coupling of unactivated secondary and tertiary alkyl bromides with benzophenone imines to produce protected primary amines in the presence of palladium ligated by the hindered trialkylphosphine Cy2t-BuP. Mechanistic studies indicate that this amination of alkyl halides occurs by a reversible reaction to form a free alkyl radical.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA