Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Molecules ; 28(14)2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37513359

RESUMEN

Epinephrine (EP, also called adrenaline) is a compound belonging to the catecholamine neurotransmitter family. It can cause neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis. This work describes an amperometric sensor for the electroanalytical detection of EP by using an inkjet-printed graphene electrode (IPGE) that has been chemically modified by a thin layer of a laponite (La) clay mineral. The ion exchange properties and permeability of the chemically modified electrode (denoted La/IPGE) were evaluated using multi-sweep cyclic voltammetry, while its charge transfer resistance was determined by electrochemical impedance spectroscopy. The results showed that La/IPGE exhibited higher sensitivity to EP compared to the bare IPGE. The developed sensor was directly applied for the determination of EP in aqueous solution using differential pulse voltammetry. Under optimized conditions, a linear calibration graph was obtained in the concentration range between 0.8 µM and 10 µM. The anodic peak current of EP was directly proportional to its concentration, leading to detection limits of 0.34 µM and 0.26 µM with bare IPGE and La/IPGE, respectively. The sensor was successfully applied for the determination of EP in pharmaceutical preparations. Recovery rates and the effects of interfering species on the detection of EP were evaluated to highlight the selectivity of the elaborated sensor.


Asunto(s)
Grafito , Grafito/química , Carbono/química , Arcilla , Técnicas Electroquímicas/métodos , Epinefrina/química , Electrodos , Preparaciones Farmacéuticas
2.
Nanomaterials (Basel) ; 12(17)2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36079966

RESUMEN

A talc-like magnesium phyllosilicate functionalized with amine groups (TalcNH2), useful as sensor material in voltammetry stripping analysis, was synthesized by a sol-gel-based processing method. The characterizations of the resulting synthetic organoclay by scanning electron microscopy (SEM), X-ray diffraction, N2 sorption isotherms (BET method), Fourier transform infrared spectroscopy (FTIR), CHN elemental analysis and UV-Vis diffuse reflectance spectroscopy (UV-Vis-DRS) demonstrated the effectiveness of the process used for grafting of amine functionality in the interlamellar clay. The results indicate the presence of organic moieties covalently bonded to the inorganic lattice of talc-like magnesium phyllosilicate silicon sheet, with interlayer distances of 1568.4 pm. In an effort to use a talc-like material as an electrode material without the addition of a dispersing agent and/or molecular glue, the TalcNH2 material was successfully dispersed in distilled water in contrast to natural talc. Then, it was used to modify a glassy carbon electrode (GCE) by drop coating. The characterization of the resulting modified electrode by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) revealed its charge selectivity ability. In addition, EIS results showed low charge transfer resistance (0.32 Ω) during the electro-oxidation of [Fe(CN)6]3-. Kinetics studies were also performed by EIS, which revealed that the standard heterogeneous electron transfer rate constant was (0.019 ± 0.001) cm.s-1, indicating a fast direct electron transfer rate of [Fe(CN)6]3- to the electrode. Using anodic adsorptive stripping differential pulse voltammetry (DPV), fast and highly sensitive determination of Pb(II) ions was achieved. The peak current of Pb2+ ions on TalcNH2/GCE was about three-fold more important than that obtained on bare GCE. The calculated detection and quantification limits were respectively 7.45 × 10-8 M (S/N = 3) and 24.84 × 10-8 M (S/N 10), for the determination of Pb2+ under optimized conditions. The method was successfully used to tap water with satisfactory results. The results highlight the efficient chelation of Pb2+ ions by the grafted NH2 groups and the potential of talc-like amino-functionalized magnesium phyllosilicate for application in electrochemical sensors.

3.
Sensors (Basel) ; 22(16)2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-36015934

RESUMEN

In this work, an electrode modified with an amino-functionalized clay mineral was used for the electrochemical analysis and quantification of quercetin (QCT). The resulting amine laponite (LaNH2) was used as modifier for a glassy carbon electrode (GCE). The organic-inorganic hybrid material was structurally characterized using X-ray diffraction, Fourier transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and CHN elemental analysis. The covalent grafting of the organosilane to the clay backbone was confirmed. The charge on the aminated laponite, both without and with the protonation of NH2 groups, was evaluated via cyclic voltammetry. On the protonated amine (LaNH3+)-modified GCE, the cyclic voltammograms for QCT showed two oxidation peaks and one reduction peak in the range of -0.2 V to 1.2 V in a phosphate buffer-ethanol mixture at pH 3. By using the differential pulse voltammetry (DPV), the modification showed an increase in the electrode performance and a strong pH dependence. The experimental conditions were optimized, with the results showing that the peak current intensity of the DPV increased linearly with the QCT concentration in the range from 2 × 10-7 M to 2 × 10-6 M, leading to a detection limit of 2.63 × 10-8 M (S/N 3). The sensor selectivity was also evaluated in the presence of interfering species. Finally, the proposed aminated organoclay-modified electrode was successfully applied for the detection of QCT in human urine. The accuracy of the results achieved with the sensor was evaluated by comparing the results obtained using UV-visible spectrometry.


Asunto(s)
Técnicas Electroquímicas , Quercetina , Aminas , Carbono/química , Arcilla , Técnicas Electroquímicas/métodos , Electrodos , Humanos , Silicatos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA