Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
J Dent ; 132: 104476, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36905949

RESUMEN

OBJECTIVE: The aim of this study is to evaluate the accuracy in endodontics of a novel augmented reality (AR) method for guided access cavity preparation in 3D-printed jaws. METHODS: Two operators with different levels of experience in endodontics performed pre-planned virtually guided access cavities through a novel markerless AR system on three sets of 3D-printed jaw models (Objet Connex 350, Stratasys) mounted on a phantom. After the treatment, a post-operative high-resolution CBCT scan (NewTom VGI Evo, Cefla) was taken for each model and registered to the pre-operative model. All the access cavities were then digitally reconstructed by filling the cavity area using 3D medical software (3-Matic 15.0, materialize). For the anterior teeth and the premolars, the deviation at the coronal and apical entry points as well as the angular deviation of the access cavity were compared to the virtual plan. For the molars, the deviation at the coronal entry point was compared to the virtual plan. Additionally, the surface area of all access cavities at the entry point was measured and compared to the virtual plan. Descriptive statistics for each parameter were performed. A 95% confidence interval was calculated. RESULTS: A total of 90 access cavities were drilled up to a depth of 4 mm inside the tooth. The mean deviation in the frontal teeth and in the premolars at the entry point was 0.51 mm and 0.77 mm at the apical point, with a mean angular deviation of 8.5° and a mean surface overlap of 57%. The mean deviation for the molars at the entry point was 0.63 mm, with a mean surface overlap of 82%. CONCLUSION: The use of AR as a digital guide for endodontic access cavity drilling on different teeth showed promising results and might have potential for clinical use. However, further development and research might be needed before in vivo validation.


Asunto(s)
Realidad Aumentada , Caries Dental , Endodoncia , Humanos , Cavidad Pulpar/diagnóstico por imagen , Tomografía Computarizada de Haz Cónico , Endodoncia/métodos , Diente Premolar
2.
Materials (Basel) ; 15(23)2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36500098

RESUMEN

BACKGROUND: The main objective of this systematic review was to compare the apical healing, root maturation and histological characteristics of teeth treated with cell-based versus cell-free techniques. METHODS: The methodology of this review was based on the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. A literature search strategy was carried out on PubMed, EMBASE and the Web of Science databases. The last search was done on 1 August 2021. Articles written in languages other than English were excluded. Two researchers independently selected the studies and extracted the data. As no randomized clinical trials were available, animal studies were included. RESULTS: In total, 26 studies were included in the systematic review: 22 articles only researched the cell-free technique, 3 articles compared the cell-based to the cell-free technique, and 1 article compared the cell-based technique to apexification. In terms of apical healing, qualitative analysis of the data suggested that there seems to be no significant difference between cell-free and cell-based techniques. The results regarding tooth maturation are contradictory. The main difference between the cell-free and the cell-based techniques seems to be the histology of the treated tooth. The cell-free technique seems to result in cementum-like, bone-like or periodontal ligament-like tissue. One study, on the other hand, found that the cell-based technique resulted in regeneration of the whole pulp with an odontoblast layer, connective tissue, blood vessels and neuronal tissue. CONCLUSIONS: Currently, the number of randomized clinical trials on this topic are very scarce. This is probably due to the limited infrastructure and lack of resources to apply the cell-based technique. Even though both techniques seem to be promising for clinical application, long-term data need to be provided regarding the healing and reparative patterns.

3.
Mater Sci Eng C Mater Biol Appl ; 126: 112105, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34082929

RESUMEN

AIM: Our study aimed to measure (1) the flexural strength, (2) shear bond strength to dentin, (3) pH, and (4) calcium (Ca) release of a series of innovative resin-modified calcium-silicate pulp-capping cements (Rm-CSCs). Using an ex-vivo human vital tooth-culture model, we additionally assessed (5) their pulp-healing initiation when brought in direct contact with human dental pulp tissue. METHODOLOGY: Three experimental Rm-CSCs, being referred to 'Exp_HEAA', 'Exp_GDM' and 'Exp_HEAA/GDM', contained either 20 wt% N-(2-hydroxyethyl) acrylamide (HEAA), 20 wt% glycerol dimethacrylate (GDM) or 10 wt% HEAA plus 10 wt% GDM, added to a common base composition consisting of 25 wt% urethane dimethacrylate (UDMA), 10 wt% 4-methacryloxyethyl trimellitate anhydride (4-MET), and 5 wt% N,N'-{[(2-acrylamido-2-[(3-acrylamidopropoxy)methyl] propane-1,3-diyl)bis(oxy)]bis-(propane-1,3-diyl)}diacrylamide (FAM-401). As Ca source and radiopacifier, 37 wt% tricalcium silicate powder (TCS) and 3 wt% zirconium oxide (ZrO 2) were respectively added. RESULTS: All three experimental Rm-CSCs revealed a significantly higher flexural strength and shear bond strength to dentin (p < 0.05) than the commercial reference Rm-CSC TheraCal LC (Bisco). Exp_HEAA presented with a significantly higher Ca release and pH at 24 h compared with the other Rm-CSCs (p < 0.05). At 1 week, the Ca release and pH of Exp_HEAA and Exp_HEAA/GDM was significantly higher than those of Exp_GDM and TheraCal LC (p < 0.05). Using the ex-vivo human vital tooth culture model, Exp_HEAA revealed pulp-healing initiation capacity as documented by nestin and collagen-I expression. CONCLUSIONS: Depending on the formulation, the innovative Rm-CSCs performed favorably for primary properties of relevance regarding pulp capping, this more specifically in terms of flexural strength, bond strength to dentin, as well as alkaline pH and Ca release. However, only Exp_HEAA revealed pulp-healing initiation in direct contact with human dental pulp tissue in the ex-vivo human vital tooth-culture model. This promising outcome for Exp_HEAA should be attributed to the combined use of (1) a novel hydrophilic acrylamide monomer, enabling sufficient polymerization while maintaining adequate hydrophilicity, with (2) the functional monomer 4-MET, possessing chemical bonding potential to dentin, and (3) tricalcium silicate powder to achieve an alkaline pH and to release Ca in a sufficient and controlled way.


Asunto(s)
Calcio , Cemento de Silicato , Acrilamida , Compuestos de Calcio , Humanos , Ensayo de Materiales , Silicatos , Ingeniería de Tejidos
4.
Materials (Basel) ; 13(12)2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32545425

RESUMEN

Background. In the era of biology-driven endodontics, vital pulp therapies are regaining popularity as a valid clinical option to postpone root-canal treatment. In this sense, many different materials are available in the market for pulp-capping purposes. Objectives. The main aim of this systematic review and meta-analysis was to examine literature regarding cytotoxicity and bioactivity of pulp-capping agents by exposure of human dental pulp cells of primary origin to these materials. A secondary objective was to evaluate the inflammatory reaction and reparative dentin-bridge formation induced by the different pulp-capping agents on human pulp tissue. Data sources. A literature search strategy was carried out on PubMed, EMBASE and the Web of Science databases. The last search was done on 1 May 2020. No filters or language restrictions were initially applied. Two researchers independently selected the studies and extracted the data. Study selection included eligibility criteria, participants and interventions, study appraisal and synthesis methods. In vitro studies were included when human dental pulp cells of primary origin were (in)directly exposed to pulp-capping agents. Parallel or split-mouth randomized or controlled clinical trials (RCT or CCT) were selected to investigate the effects of different pulp-capping agents on the inflammation and reparative bridge-formation capacity of human pulp tissue. Data were synthesized via odds ratios (95% confidence interval) with fixed or random effects models, depending on the homogeneity of the studies. The relative risks (95% confidence interval) were presented for the sake of interpretation. Results. In total, 26 in vitro and 30 in vivo studies were included in the systematic review and meta-analysis, respectively. The qualitative analysis of in vitro data suggested that resin-free hydraulic calcium-silicate cements promote cell viability and bioactivity towards human dental pulp cells better than resin-based calcium-silicate cements, glass ionomers and calcium-hydroxide cements. The meta-analysis of the in vivo studies indicated that calcium-hydroxide powder/saline promotes reparative bridge formation better than the popular commercial resin-free calcium-silicate cement Pro-Root MTA (Dentsply-Sirona), although the difference was borderline non-significant (p = 0.06), and better than calcium-hydroxide cements (p < 0.0001). Moreover, resin-free pulp-capping agents fostered the formation of a complete reparative bridge better than resin-based materials (p < 0.001). On the other hand, no difference was found among the different materials tested regarding the inflammatory effect provoked at human pulp tissue. Conclusions. Calcium-hydroxide (CH) powder and Pro-Root MTA (Dentsply-Sirona) have shown excellent biocompatibility in vitro and in vivo when tested on human cells and teeth. Their use after many years of research and clinical experience seems safe and proven for vital pulp therapy in healthy individuals, given that an aseptic environment (rubber dam isolation) is provided. Although in vitro evidence suggests that most modern hydraulic calcium-silicate cements promote bioactivity when exposed to human dental pulp cells, care should be taken when these new materials are clinically applied in patients, as small changes in their composition might have big consequences on their clinical efficacy. Key findings (clinical significance). Pure calcium-hydroxide powder/saline and the commercial resin-free hydraulic calcium-silicate cement Pro-Root MTA (Dentsply-Sirona) are the best options to provide a complete reparative bridge upon vital pulp therapy. Systematic review registration number. PROSPERO registration number: CRD42020164374.

5.
J Dent ; 86: 33-40, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31121243

RESUMEN

OBJECTIVES: This study aimed to validate the human tooth model by investigating the growth efficiency, expression of mesenchymal stem cell (MSC) markers and differentiation ability of human dental pulp cells (hDPCs) harvested from extracted immature third molars and cultured for different periods. Moreover, the effect of exposure and capping with a hydraulic calcium-silicate cement on pulp tissue after 4-week culture in the tooth model was investigated. METHODS: Primary hDPCs were collected from 18 molars from six individuals (15-19 years). One tooth of each patient was immediately cultured (control), while the other teeth were exposed to culture medium for 1, 2 or 4 weeks. After different culture periods, cells were harvested using the explant method, upon which cells were evaluated for cell-doubling time, colony-forming efficiency and expression of cell surface markers. The osteogenic, adipogenic and chondrogenic differentiation efficacy was also determined. Two teeth from three different patients (n = 6) were used for the pulp-capping assay. Three teeth were capped with ProRoot MTA (Dentsply Sirona), while three other exposed teeth remained uncapped (control). RESULTS: Cells were found to grow, express MSC markers and showed osteogenic, adipogenic and chondrogenic differentiation potential at all time periods. Histology of the teeth subjected to the pulp-capping assay showed the formation of mineralized tissue after 4-week exposure to ProRoot MTA (Dentsply Sirona) and normal histological features in the control teeth. CONCLUSIONS: This study confirmed that hDPCs of teeth cultured for up to 4 weeks in a human tooth model are viable, express MSC markers and show differentiation ability. CLINICAL SIGNIFICANCE: The human tooth model can be seen as an advanced cell-culture model that makes use of the original 3D pulp-chamber structure. It can serve as a screening tool to evaluate new pulp-capping formulations in a relatively cheap and fast manner.


Asunto(s)
Pulpa Dental , Compuestos de Aluminio , Compuestos de Calcio , Cementos Dentales , Recubrimiento de la Pulpa Dental , Combinación de Medicamentos , Humanos , Minerales , Óxidos , Materiales de Recubrimiento Pulpar y Pulpectomía , Cemento de Silicato , Silicatos
6.
Dent Mater ; 34(5): 797-808, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29525357

RESUMEN

OBJECTIVES: To evaluate the effect of the eluates from 3 freshly-mixed and setting hydraulic calcium-silicate cements (hCSCs) on human dental pulp cells (HDPCs) and to examine the effect of a newly developed hCSC containing phosphopullulan (PPL) on HDPCs. METHODS: Human dental pulp cells, previously characterized as mesenchymal stem cells, were used. To collect the eluates, disks occupying the whole surface of a 12-well plate were prepared using an experimental hCSC containing phosphopullulan (GC), Nex-Cem MTA (GC), Biodentine (Septodont) or a zinc-oxide (ZnO) eugenol cement (material-related negative control). Immediately after preparing the disks (non-set), 3ml of Dulbecco's Modified Eagle Medium (DMEM) with 10% fetal bovine serum (FBS) were added. The medium was left in contact with the disks for 24h before being collected. Four different dilutions were prepared (100%, 50%, 25% and 10%) and cell-cytotoxicity, cell-proliferation, cell-migration and odontogenic differentiation were tested. The cell-cytotoxicity and cell-proliferation assays were performed by XTT-colorimetric assay at different time points. The cell-migration ability was tested with the wound-healing assay and the odontogenic differentiation capacity of hCSCs on HDPCs was tested with RT-PCR. RESULTS: Considering all experimental data together, the eluates from 3 freshly-mixed and setting hCSCs appeared not cytotoxic toward HDPCs. Moreover, all three cements stimulated proliferation, migration and odontogenic differentiation of HDPCs. SIGNIFICANCE: The use of freshly-mixed and setting hCSCs is an appropriate approach to test the effect of the materials on human dental pulp cells. The experimental material containing PPL is non-cytotoxic and positively stimulates HDPCs.


Asunto(s)
Compuestos de Calcio/farmacología , Cementos Dentales/farmacología , Pulpa Dental/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Silicatos/farmacología , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Colorimetría , Humanos , Técnicas In Vitro , Ensayo de Materiales , Reacción en Cadena en Tiempo Real de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA