RESUMEN
Hereditary Leiomyomatosis and Renal Cell Cancer (HLRCC) is an inherited cancer syndrome caused by germline pathogenic variants in the fumarate hydratase (FH) gene. Affected individuals are at risk for developing cutaneous and uterine leiomyomas and aggressive FH-deficient renal cell carcinoma (RCC) with a papillary histology. Due to a disrupted TCA cycle, FH-deficient kidney cancers rely on aerobic glycolysis for energy production, potentially creating compensatory metabolic vulnerabilities. This study conducted a high-throughput drug screen in HLRCC cell lines, which identified a critical dependency on nicotinamide adenine dinucleotide (NAD), a redox cofactor produced by the biosynthetic enzyme nicotinamide phosphoribosyltransferase (NAMPT). Human HLRCC tumors and HLRCC-derived cell lines exhibited elevated NAMPT expression compared to controls. FH-deficient HLRCC cells, but not FH-restored HLRCC or normal kidney cells, were sensitive to NAMPT inhibition. HLRCC cell line viability was significantly decreased in both 2D and 3D in vitro cultures in response to the clinically relevant NAMPT inhibitor OT-82. NAMPT inhibition in vitro significantly decreased the total amount of NAD+, NADH, NADP, NADPH, and PAR levels and the effects of NAMPT inhibition could be rescued by the downstream NAD precursor nicotinamide mononucleotide, confirming the on-target activity of OT-82. Moreover, NAMPT inhibition by OT-82 in two HLRCC xenograft models resulted in severely reduced tumor growth. OT-82 treatment of HLRCC xenograft tumors in vivo inhibited glycolytic flux as demonstrated by reduced lactate/pyruvate ratio in hyperpolarized 13C-pyruvate magnetic resonance spectroscopic imaging experiments. Overall, our data define NAMPT inhibition as a potential therapeutic approach for FH-deficient HLRCC-associated renal cell carcinoma.
RESUMEN
BACKGROUND: The identification of oncogenic mutations in diffuse large B-cell lymphoma (DLBCL) has led to the development of drugs that target essential survival pathways, but whether targeting multiple survival pathways may be curative in DLBCL is unknown. METHODS: We performed a single-center, phase 1b-2 study of a regimen of venetoclax, ibrutinib, prednisone, obinutuzumab, and lenalidomide (ViPOR) in relapsed or refractory DLBCL. In phase 1b, which included patients with DLBCL and indolent lymphomas, four dose levels of venetoclax were evaluated to identify the recommended phase 2 dose, with fixed doses of the other four drugs. A phase 2 expansion in patients with germinal-center B-cell (GCB) and non-GCB DLBCL was performed. ViPOR was administered every 21 days for six cycles. RESULTS: In phase 1b of the study, involving 20 patients (10 with DLBCL), a single dose-limiting toxic effect of grade 3 intracranial hemorrhage occurred, a result that established venetoclax at a dose of 800 mg as the recommended phase 2 dose. Phase 2 included 40 patients with DLBCL. Toxic effects that were observed among all the patients included grade 3 or 4 neutropenia (in 24% of the cycles), thrombocytopenia (in 23%), anemia (in 7%), and febrile neutropenia (in 1%). Objective responses occurred in 54% of 48 evaluable patients with DLBCL, and complete responses occurred in 38%; complete responses were exclusively in patients with non-GCB DLBCL and high-grade B-cell lymphoma with rearrangements of MYC and BCL2 or BCL6 (or both). Circulating tumor DNA was undetectable in 33% of the patients at the end of ViPOR therapy. With a median follow-up of 40 months, 2-year progression-free survival and overall survival were 34% (95% confidence interval [CI], 21 to 47) and 36% (95% CI, 23 to 49), respectively. CONCLUSIONS: Treatment with ViPOR was associated with durable remissions in patients with specific molecular DLBCL subtypes and was associated with mainly reversible adverse events. (Funded by the Intramural Research Program of the National Cancer Institute and the National Center for Advancing Translational Sciences of the National Institutes of Health and others; ClinicalTrials.gov number, NCT03223610.).
Asunto(s)
Anticuerpos Monoclonales Humanizados , Protocolos de Quimioterapia Combinada Antineoplásica , Lenalidomida , Linfoma de Células B Grandes Difuso , Piperidinas , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adenina/análogos & derivados , Adenina/efectos adversos , Adenina/uso terapéutico , Adenina/administración & dosificación , Anticuerpos Monoclonales Humanizados/efectos adversos , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales Humanizados/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Compuestos Bicíclicos Heterocíclicos con Puentes/efectos adversos , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Compuestos Bicíclicos Heterocíclicos con Puentes/administración & dosificación , Lenalidomida/efectos adversos , Lenalidomida/administración & dosificación , Lenalidomida/uso terapéutico , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/mortalidad , Terapia Molecular Dirigida , Piperidinas/efectos adversos , Piperidinas/uso terapéutico , Piperidinas/administración & dosificación , Prednisona/efectos adversos , Prednisona/administración & dosificación , Prednisona/uso terapéutico , Supervivencia sin Progresión , Pirazoles/efectos adversos , Pirazoles/uso terapéutico , Pirazoles/administración & dosificación , Pirimidinas/efectos adversos , Pirimidinas/uso terapéutico , Pirimidinas/administración & dosificación , Recurrencia , Sulfonamidas/efectos adversos , Sulfonamidas/administración & dosificación , Sulfonamidas/uso terapéuticoRESUMEN
Lenalidomide maintenance is associated with a significantly improved progression-free in patients with newly diagnosed multiple myeloma. Maintenance with lenalidomide is generally well tolerated; however, lenalidomide associated diarrhea is a common side effect and bile acid malabsorption has been suggested as an underlying mechanism. We conducted a single arm phase 2 trial of colesevelam, a bile acid binder, for lenalidomide-associated diarrhea in multiple myeloma. Patients were treated with colesevelam daily starting at 1250 mg (2 tablets 625 mg) for 12 weeks. The trial included 25 patients, 1 patient with grade 3 diarrhea, 14 with grade 2, and 10 with grade 1 diarrhea. All patients were on treatment with single agent lenalidomide maintenance and no patient progressed during the trial. Colesevelam treatment was highly effective for treatment of lenalidomide-associated diarrhea; 22 (88%) of the 25 patients responded where 17 patients (68%) had complete resolution of diarrhea, and 5 patients (20%) had improvement by 1 grade of diarrhea. The responses to colesevelam were seen within the first two weeks of treatment. These findings support the conclusion that lenalidomide-associated diarrhea is driven by bile acid malabsorption. Five patients reported mild gastrointestinal side effects including constipation. Importantly, the pharmacokinetics of lenalidomide were not affected by concomitant colesevelam treatment. The stool microbiome composition was not significantly different before and after colesevelam treatment. Patients reported improved diarrhea, fewer gastrointestinal symptoms, and less interference with their daily life after starting colesevelam. In summary, colesevelam was safe and highly effective for treatment of lenalidomide-associated diarrhea in multiple myeloma and does not reduce the clinical effect of lenalidomide.
RESUMEN
Background: LMB-100 is a mesothelin (MSLN)-targeting recombinant immunotoxin (iTox) carrying a Pseudomonas exotoxin A payload that has shown promise against solid tumors, however, efficacy is limited by the development of neutralizing anti-drug antibodies (ADAs). Tofacitinib is an oral Janus Kinase (JAK) inhibitor that prevented ADA formation against iTox in preclinical studies. Methods: A phase 1 trial testing LMB-100 and tofacitinib in patients with MSLN-expressing cancers (pancreatic adenocarcinoma, n=13; cholangiocarcinoma, n=1; appendiceal carcinoma, n=1; cystadenocarcinoma, n=1) was performed to assess safety and to determine if tofacitinib impacted ADA formation. Participants were treated for up to 3 cycles with LMB-100 as a 30-minute infusion on days 4, 6, and 8 at two dose levels (100 and 140 µg/kg) while oral tofacitinib was administered for the first 10 days of the cycle (10 mg BID). Peripheral blood was collected for analysis of ADA levels, serum cytokines and circulating immune subsets. Results: The study was closed early due to occurrence of drug-induced pericarditis in 2 patients. Pericarditis with the combination was not reproducible in a transgenic murine model containing human MSLN. Two of 4 patients receiving all 3 cycles of treatment maintained effective LMB-100 levels, an unusual occurrence. Sustained increases in systemic IL-10 and TNF-α were seen, a phenomenon not observed in prior LMB-100 studies. A decrease in activated T cell subsets and an increase in circulating immunosuppressive myeloid populations occurred. No radiologic decreases in tumor volume were observed. Discussion: Further testing of tofacitinib to prevent ADA formation is recommended in applicable non-malignant disease settings. Clinical trial registration: https://www.clinicaltrials.gov/study/NCT04034238.
RESUMEN
BACKGROUND: The aim of this study is an improved understanding of drug distribution in brain metastases. Rather than single point snapshots, we analyzed the time course and route of drug/probe elimination (clearance), focusing on the intramural periarterial drainage (IPAD) pathway. METHODS: Mice with JIMT1-BR HER2+ experimental brain metastases were injected with biocytin-TMR and either trastuzumab or human IgG. Drugs/probes circulated for 5 min to 48 h, followed by perfusion. Brain sections were stained for human IgG, vascular basement membrane proteins laminin or collagen IV, and periarterial α-SMA. A machine learning algorithm was developed to identify metastases, metastatic microenvironment, and uninvolved brain in confocally scanned brain sections. Drug/probe intensity over time and total imaged drug exposure (iAUC) were calculated for 27,249 lesions and co-immunofluorescence with IPAD-vascular matrix analyzed in 11,668 metastases. RESULTS: In metastases, peak trastuzumab levels were 5-fold higher than human IgG but 4-fold less than biocytin-TMR. The elimination phase constituted 85-93% of total iAUC for all drugs/probes tested. For trastuzumab, total iAUC during uptake was similar to the small molecule drug probe biocytin-TMR, but slower trastuzumab elimination resulted in a 1.7-fold higher total iAUC. During elimination trastuzumab and IgG were preferentially enriched in the α-SMA+ periarterial vascular matrix, consistent with the IPAD clearance route; biocytin-TMR showed heterogeneous elimination pathways. CONCLUSIONS: Drug/probe elimination is an important component of drug development for brain metastases. We identified a prolonged elimination pathway for systemically administered antibodies through the periarterial vascular matrix that may contribute to the sustained presence and efficacy of large antibody therapeutics.
Asunto(s)
Neoplasias Encefálicas , Neoplasias de la Mama , Inmunoglobulina G , Receptor ErbB-2 , Trastuzumab , Trastuzumab/farmacocinética , Animales , Ratones , Humanos , Femenino , Neoplasias Encefálicas/secundario , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Inmunoglobulina G/metabolismo , Receptor ErbB-2/metabolismo , Antineoplásicos Inmunológicos/farmacocinética , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
PARP inhibitors have emerged as a promising class of anticancer agents approved for the treatment of ovarian, breast, prostate, and pancreatic cancer. These inhibitors target PARP enzymes involved in DNA repair pathways and exhibit remarkable efficacy in cancers with genetic deficiencies in the homologous recombination pathway responsible for mending DNA double-strand breaks. While all PARP inhibitors demonstrate potent and selective inhibition of PARP1 and PARP2, the key enzymes involved in DNA repair, each agent within the class possesses unique pharmacological profiles distinguishing them from one another. This review aims to comprehensively examine the properties of the entire PARP inhibitor class while emphasizing individual pharmacologic and pharmacokinetic distinctions that inform clinical recommendations. Currently, four agents, namely olaparib, rucaparib, niraparib, and talazoparib, have obtained approval in the United States and Europe. Olaparib, the first approved PARP inhibitor, has been extensively studied and is indicated for a wider range of cancer types. Niraparib and talazoparib, the more recent additions to the PARP inhibitor class, possess the longest half-lives and are formulated for convenient once-daily dosing, alleviating the pill burden for patients when compared to older agents. Moreover, talazoparib undergoes minimal hepatic metabolism, reducing the potential for drug-drug interactions. Notably, niraparib is the sole PARP inhibitor recommended for dose reduction in hepatically impaired populations, whereas talazoparib and olaparib should be dose reduced in renally impaired populations. The mechanisms underlying these dose adjustment recommendations are further explored in this review. Additionally, this review briefly covers veliparib, a PARP inhibitor under development, and two recently approved PARP inhibitors in China, fuzuloparib and pamiparib. Although significant progress has been made in understanding PARP inhibitors, there are several unanswered questions that remain, necessitating further research across a broader spectrum of cancer types within this evolving class of anticancer agents.
RESUMEN
Immune checkpoint inhibitors (ICIs) are approved for the treatment of a variety of cancer types. The doses of these drugs, though approved by the Food and Drug Administration (FDA), have never been optimised, likely leading to significantly higher doses than required for optimal efficacy. Dose optimisation would hypothetically decrease the risk, severity, and duration of immune-related adverse events, as well as provide an opportunity to reduce costs through interventional pharmacoeconomic strategies such as off-label dose reductions or less frequent dosing. We summarise existing evidence for ICI dose optimisation to advocate for the role of interventional pharmacoeconomics.
Asunto(s)
Economía Farmacéutica , Inhibidores de Puntos de Control Inmunológico , Estados Unidos , Humanos , Reducción Gradual de Medicamentos , United States Food and Drug AdministrationRESUMEN
BACKGROUND: Diffuse intrinsic pontine glioma (DIPG) is a lethal childhood cancer with median survival of less than 1 year. Panobinostat is an oral multihistone deacetylase inhibitor with preclinical activity in DIPG models. Study objectives were to determine safety, tolerability, maximum tolerated dose (MTD), toxicity profile, and pharmacokinetics of panobinostat in children with DIPG. PATIENTS AND METHODS: In stratum 1, panobinostat was administered 3 days per week for 3 weeks on, 1 week off to children with progressive DIPG, with dose escalation following a two-stage continual reassessment method. After this MTD was determined, the study was amended to evaluate the MTD in children with nonprogressive DIPG/Diffuse midline glioma (DMG) (stratum 2) on an alternate schedule, 3 days a week every other week in an effort to escalate the dose. RESULTS: For stratum 1, 19 subjects enrolled with 17/19 evaluable for dose-finding. The MTD was 10 mg/m2/dose. Dose-limiting toxicities included thrombocytopenia and neutropenia. Posterior reversible encephalopathy syndrome was reported in 1 patient. For stratum 2, 34 eligible subjects enrolled with 29/34 evaluable for dose finding. The MTD on this schedule was 22 mg/m2/dose. DLTs included thrombocytopenia, neutropenia, neutropenia with grade 4 thrombocytopenia, prolonged intolerable nausea, and increased ALT. CONCLUSIONS: The MTD of panobinostat is 10 mg/m2/dose administered 3 times per week for 3 weeks on/1 week off in children with progressive DIPG/DMG and 22 mg/m2/dose administered 3 times per week for 1 week on/1 week off when administered in a similar population preprogression. The most common toxicity for both schedules was myelosuppression.
Asunto(s)
Neoplasias del Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Glioma , Neutropenia , Síndrome de Leucoencefalopatía Posterior , Trombocitopenia , Niño , Humanos , Panobinostat/farmacocinética , Glioma Pontino Intrínseco Difuso/tratamiento farmacológico , Glioma/tratamiento farmacológico , Glioma/patología , Neoplasias del Tronco Encefálico/tratamiento farmacológico , Neoplasias del Tronco Encefálico/patologíaRESUMEN
Rhabdomyosarcoma (RMS) is the most common pediatric soft tissue sarcoma. Despite decades of clinical trials, the overall survival rate for patients with relapsed and metastatic disease remains below 30%, underscoring the need for novel treatments. FGFR4, a receptor tyrosine kinase that is overexpressed in RMS and mutationally activated in 10% of cases, is a promising target for treatment. Here, we show that futibatinib, an irreversible pan-FGFR inhibitor, inhibits the growth of RMS cell lines in vitro by inhibiting phosphorylation of FGFR4 and its downstream targets. Moreover, we provide evidence that the combination of futibatinib with currently used chemotherapies such as irinotecan and vincristine has a synergistic effect against RMS in vitro. However, in RMS xenograft models, futibatinib monotherapy and combination treatment have limited efficacy in delaying tumor growth and prolonging survival. Moreover, limited efficacy is only observed in a PAX3-FOXO1 fusion-negative (FN) RMS cell line with mutationally activated FGFR4, whereas little or no efficacy is observed in PAX3-FOXO1 fusion-positive (FP) RMS cell lines with FGFR4 overexpression. Alternative treatment modalities such as combining futibatinib with other kinase inhibitors or targeting FGFR4 with CAR T cells or antibody-drug conjugate may be more effective than the approaches tested in this study.
RESUMEN
PURPOSE: Children with low-grade glioma often require long-term therapy and suffer from treatment morbidity. Although targeted agents are promising, tumor targets often encompass normal developmental pathways and long-term effects of inhibition are unknown. Lenalidomide is an immunomodulatory agent with wide-ranging properties. Phase I studies indicated greater tolerability of lenalidomide in children compared with adults and a potential dose-response effect. PATIENTS AND METHODS: We performed a phase II trial of lenalidomide in children with pilocytic astrocytomas and optic pathway gliomas who failed initial therapy. Primary objectives included determination of objective response rate of children randomly assigned to regimen A, low-dose (20 mg/m2/dose), or regimen B, high-dose (115 mg/m2/dose) lenalidomide, and assessment for early progression. Secondary objectives included estimation of event-free survival, overall survival, incidence of toxic events, and assessment of plasma lenalidomide concentrations. Lenalidomide was administered once daily × 21 days of each 28-day cycle for each regimen. RESULTS: Seventy-four eligible patients were enrolled (n = 37, each arm). The predefined activity level of interest was achieved for both arms. Four objective responses were observed in each arm, and the number of early progressors was low. Eighteen patients completed 26 cycles of therapy (regimen A, n = 12; regimen B, n = 6). The median number of cycles was 14 (range, 2-26) for regimen A and 11 for regimen B (range, 1-26). Of 74 eligible patients who received study drug, 30 required dose reduction for toxicity (regimen A, n = 6; regimen B, n = 24) and 16 discontinued because of toxicity (regimen A, n = 2; regimen B, n = 14). CONCLUSION: Lenalidomide demonstrates a sufficient level of activity in children with low-grade glioma to warrant further exploration. Low-dose (20 mg/m2/dose administered once daily × 21 days of each 28-day cycle) lenalidomide appears to have better tolerability with comparable activity.
Asunto(s)
Antineoplásicos , Astrocitoma , Niño , Humanos , Antineoplásicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Astrocitoma/tratamiento farmacológico , LenalidomidaRESUMEN
Metarrestin is a first-in-class small molecule inhibitor targeting the perinucleolar compartment, a subnuclear body associated with metastatic capacity. Promising preclinical results led to the clinical translation of the compound into a first-in-human phase I trial (NCT04222413). To characterize metarrestin's pharmacokinetic profile in humans, a uHPLC-MS/MS assay was developed and validated to determine the disposition of the drug in human plasma. Efficient sample preparation was accomplished through one-step protein precipitation paired with elution through a phospholipid filtration plate. Chromatographic separation was achieved with gradient elution through an Acuity UPLC® BEH C18 column (50 × 2.1 mm, 1.7 µm). Tandem mass spectrometry facilitated the detection of metarrestin and tolbutamide, the internal standard. The effective calibration range spanned 1-5000 ng/mL and was both accurate (range -5.9 % to 4.9 % deviation) and precise (≤9.0 %CV). Metarrestin proved stable (≤4.9 % degradation) under various assay-imposed conditions. Matrix effects, extraction efficiency, and process efficiency were assessed. Further, the assay was successfully able to determine the disposition of orally administered metarrestin in patients from the lowest dose cohort (1 mg) for 48 h post-administration. Thus, the validated analytical method detailed in this work is simple, sensitive, and clinically applicable.
Asunto(s)
Pirimidinas , Espectrometría de Masas en Tándem , Humanos , Espectrometría de Masas en Tándem/métodos , Pirimidinas/farmacocinética , Pirroles/farmacocinética , Cromatografía Líquida de Alta Presión/métodos , Reproducibilidad de los ResultadosRESUMEN
Alterations in the p38 mitogen-activated protein kinases (MAPKs) play an important role in the pathogenesis of dementia with Lewy bodies (DLB) and Parkinson's disease (PD). Activation of the p38α MAPK isoform and mislocalization of the p38γ MAPK isoform are associated with neuroinflammation and synaptic degeneration in DLB and PD. Therefore, we hypothesized that p38α might be associated with neuronal p38γ distribution and synaptic dysfunction in these diseases. To test this hypothesis, we treated in vitro cellular and in vivo mouse models of DLB/PD with SKF-86002, a compound that attenuates inflammation by inhibiting p38α/ß, and then investigated the effects of this compound on p38γ and neurodegenerative pathology. We found that inhibition of p38α reduced neuroinflammation and ameliorated synaptic, neurodegenerative, and motor behavioral deficits in transgenic mice overexpressing human α-synuclein. Moreover, treatment with SKF-86002 promoted the redistribution of p38γ to synapses and reduced the accumulation of α-synuclein in mice overexpressing human α-synuclein. Supporting the potential value of targeting p38 in DLB/PD, we found that SKF-86002 promoted the redistribution of p38γ in neurons differentiated from iPS cells derived from patients with familial PD (carrying the A53T α-synuclein mutation) and healthy controls. Treatment with SKF-86002 ameliorated α-synuclein-induced neurodegeneration in these neurons only when microglia were pretreated with this compound. However, direct treatment of neurons with SKF-86002 did not affect α-synuclein-induced neurotoxicity, suggesting that SKF-86002 treatment inhibits α-synuclein-induced neurotoxicity mediated by microglia. These findings provide a mechanistic connection between p38α and p38γ as well as a rationale for targeting this pathway in DLB/PD.
Asunto(s)
Proteína Quinasa 14 Activada por Mitógenos , Enfermedad de Parkinson , Humanos , Ratones , Animales , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/patología , alfa-Sinucleína/metabolismo , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Enfermedades Neuroinflamatorias , Neuronas/metabolismo , Ratones TransgénicosRESUMEN
PURPOSE: Preclinical data showed that prophylactic, low-dose temozolomide (TMZ) significantly prevented breast cancer brain metastasis. We present results of a phase I trial combining T-DM1 with TMZ for the prevention of additional brain metastases after previous occurrence and local treatment in patients with HER2+ breast cancer. PATIENTS AND METHODS: Eligible patients had HER2+ breast cancer with brain metastases and were within 12 weeks of whole brain radiation therapy (WBRT), stereotactic radiosurgery, and/or surgery. Standard doses of T-DM1 were administered intravenously every 21 days (3.6 mg/kg) and TMZ was given orally daily in a 3+3 phase I dose escalation design at 30, 40, or 50 mg/m2, continuously. DLT period was one 21-day cycle. Primary endpoint was safety and recommended phase II dose. Symptom questionnaires, brain MRI, and systemic CT scans were performed every 6 weeks. Cell-free DNA sequencing was performed on patients' plasma and CSF. RESULTS: Twelve women enrolled, nine (75%) with prior SRS therapy and three (25%) with prior WBRT. Grade 3 or 4 AEs included thrombocytopenia (1/12), neutropenia (1/12), lymphopenia (6/12), and decreased CD4 (6/12), requiring pentamidine for Pneumocystis jirovecii pneumonia prophylaxis. No DLT was observed. Four patients on the highest TMZ dose underwent dose reductions. At trial entry, 6 of 12 patients had tumor mutations in CSF, indicating ongoing metastatic colonization despite a clear MRI. Median follow-up on study was 9.6 m (2.8-33.9); only 2 patients developed new parenchymal brain metastases. Tumor mutations varied with patient outcome. CONCLUSIONS: Metronomic TMZ in combination with standard dose T-DM1 shows low-grade toxicity and potential activity in secondary prevention of HER2+ brain metastases.
Asunto(s)
Neoplasias Encefálicas , Neoplasias de la Mama , Ácidos Nucleicos Libres de Células , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Temozolomida/uso terapéutico , Prevención Secundaria , Receptor ErbB-2/genética , Receptor ErbB-2/uso terapéutico , Ado-Trastuzumab Emtansina/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/secundarioRESUMEN
Atezolizumab, a humanized monoclonal antibody against programmed cell death ligand 1 (PD-L1), was initially approved in 2016, around the same time that the sponsor published the minimum serum concentration to maintain the saturation of receptor occupancy (6 µg/mL). The initially approved dose regimen of 1200 mg every 3 weeks (q3w) was subsequently modified to 840 mg q2w or 1680 mg q4w through pharmacokinetic simulations. Yet, each standard regimen yields steady-state trough concentrations (CMIN,SS ) far exceeding (≈ 40-fold) the stated target concentration. Additionally, the steady-state area under the plasma drug concentration-time curve (AUCSS ) at 1200 mg q3w was significantly (P = .027) correlated with the probability of adverse events of special interest (AESIs) in patients with non-small cell lung cancer (NSCLC) and, coupled with excess exposure, this provides incentive to explore alternative dose regimens to lower the exposure burden while maintaining an effective CMIN,SS . In this study, we first identified 840 mg q6w as an extended-interval regimen that could robustly maintain a serum concentration of 6 µg/mL (≥99% of virtual patients simulated, n = 1000), then applied this regimen to an approach that administers 2 "loading doses" of standard-interval regimens for a future clinical trial aiming to personalize dose regimens. Each standard dose was simulated for 2 loading doses, then 840 mg q6w thereafter; all yielded cycle-7 CMIN,SS values of >6 µg/mL in >99% of virtual patients. Further, the AUCSS from 840 mg q6w resulted in a flattening (P = .63) of the exposure-response relationship with adverse events of special interest (AESIs). We next aim to verify this in a clinical trial seeking to validate extended-interval dosing in a personalized approach using therapeutic drug monitoring.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Resultado del Tratamiento , Neoplasias Pulmonares/tratamiento farmacológico , Anticuerpos Monoclonales Humanizados/farmacocinética , Simulación por ComputadorRESUMEN
PURPOSE: Succinate dehydrogenase (dSDH)-deficient tumors, including pheochromocytoma/paraganglioma, hereditary leiomyomatosis and renal cell cancer-associated renal cell carcinoma (HLRCC-RCC), and gastrointestinal stromal tumors (GIST) without KIT or platelet-derived growth factor receptor alpha mutations are often resistant to cytotoxic chemotherapy, radiotherapy, and many targeted therapies. We evaluated guadecitabine, a dinucleotide containing the DNA methyltransferase inhibitor decitabine, in these patient populations. PATIENTS AND METHODS: Phase II study of guadecitabine (subcutaneously, 45 mg/m2/day for 5 consecutive days, planned 28-day cycle) to assess clinical activity (according to RECISTv.1.1) across three strata of patients with dSDH GIST, pheochromocytoma/paraganglioma, or HLRCC-RCC. A Simon optimal two-stage design (target response rate 30% rule out 5%) was used. Biologic correlates (methylation and metabolites) from peripheral blood mononuclear cells (PBMC), serum, and urine were analyzed. RESULTS: Nine patients (7 with dSDH GIST, 1 each with paraganglioma and HLRCC-RCC, 6 females and 3 males, age range 18-57 years) were enrolled. Two patients developed treatment-limiting neutropenia. No partial or complete responses were observed (range 1-17 cycles of therapy). Biologic activity assessed as global demethylation in PBMCs was observed. No clear changes in metabolite concentrations were observed. CONCLUSIONS: Guadecitabine was tolerated in patients with dSDH tumors with manageable toxicity. Although 4 of 9 patients had prolonged stable disease, there were no objective responses. Thus, guadecitabine did not meet the target of 30% response rate across dSDH tumors at this dose, although signs of biologic activity were noted.
Asunto(s)
Neoplasias de las Glándulas Suprarrenales , Productos Biológicos , Carcinoma de Células Renales , Tumores del Estroma Gastrointestinal , Neoplasias Renales , Paraganglioma , Feocromocitoma , Masculino , Femenino , Adulto , Humanos , Niño , Adolescente , Adulto Joven , Persona de Mediana Edad , Succinato Deshidrogenasa/genética , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Tumores del Estroma Gastrointestinal/genética , Leucocitos Mononucleares/metabolismo , Paraganglioma/tratamiento farmacológico , Paraganglioma/genéticaRESUMEN
PURPOSE: PAX-fusion negative rhabdomyosarcoma (FN RMS) is driven by alterations in the RAS/MAP kinase pathway and is partially responsive to MEK inhibition. Overexpression of IGF1R and its ligands is also observed in FN RMS. Preclinical and clinical studies have suggested that IGF1R is itself an important target in FN RMS. Our previous studies revealed preclinical efficacy of the MEK1/2 inhibitor, trametinib, and an IGF1R inhibitor, BMS-754807, but this combination was not pursued clinically due to intolerability in preclinical murine models. Here, we sought to identify a combination of an MEK1/2 inhibitor and IGF1R inhibitor, which would be tolerated in murine models and effective in both cell line and patient-derived xenograft models of RAS-mutant FN RMS. EXPERIMENTAL DESIGN: Using proliferation and apoptosis assays, we studied the factorial effects of trametinib and ganitumab (AMG 479), a mAb with specificity for human and murine IGF1R, in a panel of RAS-mutant FN RMS cell lines. The molecular mechanism of the observed synergy was determined using conventional and capillary immunoassays. The efficacy and tolerability of trametinib/ganitumab was assessed using a panel of RAS-mutated cell-line and patient-derived RMS xenograft models. RESULTS: Treatment with trametinib and ganitumab resulted in synergistic cellular growth inhibition in all cell lines tested and inhibition of tumor growth in four of six models of RAS-mutant RMS. The combination had little effect on body weight and did not produce thrombocytopenia, neutropenia, or hyperinsulinemia in tumor-bearing SCID beige mice. Mechanistically, ganitumab treatment prevented the phosphorylation of AKT induced by MEK inhibition alone. Therapeutic response to the combination was observed in models without a mutation in the PI3K/PTEN axis. CONCLUSIONS: We demonstrate that combined trametinib and ganitumab is effective in a genomically diverse panel of RAS-mutated FN RMS preclinical models. Our data also show that the trametinib/ganitumab combination likely has a favorable tolerability profile. These data support testing this combination in a phase I/II clinical trial for pediatric patients with relapsed or refractory RAS-mutated FN RMS.
Asunto(s)
Rabdomiosarcoma , Humanos , Animales , Ratones , Niño , Línea Celular Tumoral , Ratones SCID , Rabdomiosarcoma/tratamiento farmacológico , Rabdomiosarcoma/genética , Rabdomiosarcoma/patología , Inhibidores de Proteínas Quinasas/farmacología , Quinasas de Proteína Quinasa Activadas por MitógenosRESUMEN
LMB-100 is a novel immune-conjugate (immunotoxin) that targets mesothelin. A phase 1/2 clinical trial was conducted (NCT02810418) with primary objectives assessing the safety and efficacy of LMB-100 ± nab-paclitaxel. Participant blood samples were analyzed for changes in serum cytokines and circulating immune cell subsets associated with response or toxicity. On Arm A, participants (n = 20) received standard 30-minute LMB-100 infusion with nab-paclitaxel. Although clinical efficacy was observed, the combination caused intolerable capillary leak syndrome (CLS), a major toxicity of unclear etiology that affects many immunotoxin drugs. Participants developing CLS experienced rapid elevations in IFNγ and IL-8 compared to those without significant CLS, along with midcycle increases in Ki-67- CD4 T cells that were CD38, HLA-DR, or TIM3 positive. Additionally, a strong increase in activated CD4 and CD8 T cells and a concurrent decrease in Tregs were seen in the single Arm A patient achieving a partial response. In Arm B, administration of single agent LMB-100 to participants (n = 20) as a long infusion given over 24-48 h was investigated based on pre-clinical data that this format could reduce CLS. An optimal dose and schedule of long infusion LMB-100 were identified, but no clinical efficacy was observed even in patients receiving LMB-100 in combination with nab-paclitaxel. Despite this, both Arm A and B participants experienced increases in specific subsets of proliferating CD4 and CD8 T cells following Cycle 1 treatment. In summary, LMB-100 treatment causes systemic immune activation. Inflammatory and immune changes that accompany drug associated CLS were characterized for the first time.
Asunto(s)
Inmunoconjugados , Inmunotoxinas , Humanos , Inmunotoxinas/uso terapéutico , Anticuerpos Monoclonales , Paclitaxel/uso terapéutico , AlbúminasRESUMEN
BACKGROUND: Despite the clinical efficacy of enzalutamide monotherapy in patients with advanced prostate cancer, therapeutic resistance and disease progression are inevitable. We proposed a study to evaluate NLG207, a nanoparticle-drug conjugate (NDC) of the potent topoisomerase I inhibitor camptothecin, in combination with enzalutamide, in patients with metastatic castration-resistant prostate cancer (mCRPC) following progression on enzalutamide. METHODS: This was a single-arm, optimal two-stage, phase II study to evaluate the efficacy of NLG207 in combination with enzalutamide in patients with mCRPC who received prior enzalutamide. A lead-in dose escalation evaluated the recommended phase 2 dose of NLG207 in combination with enzalutamide. Patients received NLG207 via IV infusion every 2 weeks and enzalutamide 160 mg orally once daily. RESULTS: Between March 2019 and June 2021, four patients were accrued to the lead-in dose escalation. Two of the four patients were evaluable and both experienced DLTs at the NLG207 12 mg/m2 dose level; one DLT was related to a dose delay for noninfective cystitis and myelosuppression, the other a grade 3 noninfective cystitis. Further evaluation of NLG207 in combination with enzalutamide was halted and the study was ultimately terminated. PSA declines from baseline were observed in two patients. CONCLUSION: NLG207 12 mg/m2 in combination with enzalutamide was not well tolerated in patients with mCRPC following several lines of the standard of care therapy. CLINICALTRIALS.GOV IDENTIFIER: NCT03531827.