RESUMEN
High-altitude pulmonary edema (HAPE) is a potentially fatal condition that occurs when exposed to high-altitude hypoxia environments. Currently, there is no effective treatment for HAPE, and available interventions focus on providing relief. Notoginsenoside R1 (NGR1), a major active constituent of Panax notoginseng (Burkill) F.H.Chen (sanqi), has demonstrated heart and lung-protective effects under hypobaric hypoxia. However, there is a lack of clarity regarding the precise mechanisms that underlie the protective effects of NGR1 against inflammation. In this study, a rat model of HAPE was developed to assess the effect of NGR1 on this pathology. High-altitude hypoxia corresponding to 6000â¯m altitude was simulated with a hypobaric chamber. We found that NGR1 dose-dependently alleviated pulmonary oxidative stress damage and inflammatory response, and prevented acid-base balance disruption. In addition, NGR1 restored the expression levels of hypoxia-inducible factor-1 alpha, vascular endothelial growth factor, and aquaporin protein-5, correlated with the development of pulmonary edema induced by hypobaric hypoxia. Furthermore, NGR1 pre-treatment remarkably mitigated NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome-induced pyroptosis, and this effect was partially counteracted by the use of an NLRP3 agonist. Thus, NGR1 may exert a lung-protective effect against HAPE by ameliorating hypoxia-induced lung edema, oxidative damage, and inflammation through inhibition of the NLRP3/Caspase-1/ GSDMD signaling pathway.
RESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Ginseng has historically been utilized as a conventional herbal remedy and dietary supplement to enhance physical stamina and alleviate fatigue. The primary active component of Ginseng, Ginsenoside Rg3 (GS-Rg3), possesses diverse pharmacological properties including immune modulation and anti-inflammatory effects. Furthermore, GS-Rg3 has demonstrated efficacy in mitigating tissue and organ damage associated with metabolic disorders such as hypertension, hyperglycemia, and hyperlipidemia. Nevertheless, its potential impact on high-altitude cardiac injury (HACI) remains insufficiently explored. AIM OF THE STUDY: The aim of this study was to examine the potential cardioprotective effects of Ginsenoside Rg3, and to investigate how Ginsenoside Rg3 preconditioning can enhance high-altitude cardiac injury by inhibiting the RhoA/ROCK pathway and ferroptosis in cardiac tissue. The findings of this study may contribute to the development of novel therapeutic strategies using traditional Chinese medicine for high-altitude cardiac injury, based on experimental evidence. MATERIALS AND METHODS: A hypobaric hypoxia chamber was employed to simulate hypobaric hypoxia conditions equivalent to an altitude of 6000 m. Through a randomization process, groups of six male mice were assigned to receive either saline, Ginsenoside Rg3 at doses of 15 mg/kg or 30 mg/kg, or lysophosphatidic acid (LPA) at 1 mg/kg. The impact of Ginsenoside Rg3 on high altitude-induced arrhythmias was evaluated using electrocardiography. Cardiac pathology sections stained with hematoxylin and eosin were evaluated for damage, with the extent of cardiomyocyte damage observed via transmission electron microscopy. The impact of Ginsenoside Rg3 on high-altitude cardiac injury was investigated through analysis of serum biomarkers for cardiac injury (CK-MB, BNP), inflammatory cytokines (TNF, IL-6, IL-1ß), reactive oxygen species (ROS) and glutathione (GSH). The expression levels of hypoxia and hypoxia-related proteins in myocardial tissues from each experimental group were assessed using Western blot analysis. Following a review of the existing literature, the traditional regulatory mechanisms of ferroptosis were examined. Immunofluorescence staining of cardiac tissues and Western blotting techniques were utilized to investigate the impact of Ginsenoside Rg3 on cardiomyocyte ferroptosis through the RhoA/ROCK signaling pathway under conditions of hypobaric hypoxia exposure. RESULTS: Pre-treatment with Ginsenoside Rg3 improved high altitude-induced arrhythmias, reduced cardiomyocyte damage, decreased cardiac injury biomarkers and inflammatory cytokines, and lowered the expression of hypoxia-related proteins in myocardial tissues. Both Western blotting and immunofluorescence staining of cardiac tissues demonstrated that exposure to high-altitude hypobaric hypoxia results in elevated expression of ferroptosis and proteins related to the RhoA/ROCK pathway. Experimental validation corroborated that the role of the RhoA/ROCK signaling pathway in mediating ferroptosis. CONCLUSIONS: The findings of our study suggest that preconditioning with Ginsenoside Rg3 may attenuate cardiac injury caused by high-altitude hypobaric hypoxia exposure in mice by inhibiting ferroptosis through the suppression of the RhoA/ROCK signaling pathway. These findings contribute to the current knowledge of Ginsenoside Rg3 and high-altitude cardiac injury, suggesting that Ginsenoside Rg3 shows potential as a therapeutic agent for high-altitude cardiac injury.
RESUMEN
Lauric acid (LA) has the possibility to improve milk production in dairy cows by improving mammary gland development, however, the mechanism by which it might regulate mammary gland development is unclear. The influence of LA on milk production, nutrient digestibility and the expression of proteins related to mammary gland development in dairy cows were evaluated. Forty primiparous Holstein dairy cows were divided into 4 groups in a randomized block design. Four treatments included the control (0 g/d LA per cow), low-LA (100 g/d LA per cow), medium-LA (200 g/d LA per cow), and high-LA (300 g/d LA per cow). Yields of milk, fat-corrected milk, and energy-corrected milk quadratically increased (P < 0.05), and yield and content of milk fat linearly increased (P < 0.05) with LA supplementation. Percentages of C12:0, C18:1 and C20:1 fatty acids in milk fat linearly increased (P < 0.05), but that of C16:0 fatty acid linearly decreased (P = 0.046). Supplementation of LA led to a linear and quadratical increase (P < 0.05) in digestibility of dry matter, organic matter, neutral detergent fibre and acid detergent fibre, and ruminal total volatile fatty acid concentration but a linear reduction (P = 0.018) in the ratio of acetate to propionate. The enzymatic activities of ruminal pectinase, xylanase, and α-amylase, and populations of total bacteria and anaerobic fungi increased linearly (P < 0.05), while populations of total protozoa and methanogens decreased linearly (P < 0.05) with increased LA addition. Following LA addition, blood glucose, triglyceride, estradiol, prolactin, and insulin-like growth factor 1 concentrations increased linearly (P < 0.05) and albumin and total protein concentrations increased quadratically (P < 0.05). Moreover, addition of 200 g/d LA promoted (P < 0.05) the expression of protein involved in mammary gland development and fatty acids synthesis. These results suggested that LA addition enhanced milk production and fatty acids synthesis by stimulating nutrient digestion, the expression of proteins associated with milk fat synthesis and mammary gland development.
RESUMEN
High-altitude pulmonary edema (HAPE) is a life-threatening disease, and autophagy deficiency is implicated in the pathogenesis of HAPE. Eleutheroside B (EB), which is the main bioactive component of Acanthopanax senticosus, exhibits various pharmacological activities. Our previous research demonstrated that autophagic structures were widely found in the ultrastructure of lung tissue in HAPE rats. However, whether EB regulates autophagy deficiency in HAPE remains unknown. This study aimed to investigate the protective effects of EB on hypobaric hypoxia-induced HAPE and explore the underlying molecular mechanism of regulating autophagy. The rat model of high-altitude pulmonary edema was replicated using a hypobaric hypoxic chamber. Rats were pretreated with EB or in combination with chloroquine or compound C. The pulmonary edema was assessed by the lung wet/dry ratio, total protein concentration in bronchoalveolar lavage fluid, and histological analysis. Inflammation and oxidative stress were measured using commercial biochemical kits. Autophagy and autophagic flux were evaluated by western blotting, transmission electron microscopy, and adeno-associated virus-mRFP-GFP-labeled tandem fluorescence LC3. The AMPK/mTOR signaling pathway was detected by western blotting. EB alleviated hypobaric hypoxia-induced pulmonary edema, hypoxemia, acid-base imbalance in the blood, inflammation, and oxidative stress in a dose-dependent manner. EB restored impaired autophagic flux by activating the AMPK/mTOR signaling pathway. However, chloroquine or compound C abolished eleutheroside B-mediated autophagy flux restoration. EB has the potential to restore impaired autophagic flux in the lung of hypobaric hypoxia-induced HAPE rats, which could be attributed to the activation of AMPK/mTOR signaling pathway.
RESUMEN
6'-Sialyllactose (6'-SL), the most abundant sialylated human milk oligosaccharide, has attracted attention for its potential application in supplementary infant formulas. Herein, we report a facile strategy to construct a cascade bioreactor for the enzymatic synthesis of 6'-SL by co-immobilizing an enzymatic module consisting of CMP-sialic acid synthase and α-2,6-sialyltransferase into hierarchically porous MIL-53 (HP-MIL-53). The as-prepared HP-MIL-53 showed high enzyme immobilization capacity, reaching 226 mg g-1. Furthermore, the co-immobilized enzymes exhibited higher initial catalytic efficiency, and thermal, pH and storage stability than the free ones. Finally, the 6'-SL yield remained >80% after 13 cycles of use. We expect that HP-MIL-53 would have potential industrial applications in the enzymatic modular synthesis of 6'-SL and other glycans.
Asunto(s)
Enzimas Inmovilizadas , Sialiltransferasas , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Sialiltransferasas/metabolismo , Porosidad , Humanos , Oligosacáridos/química , Oligosacáridos/metabolismo , Oligosacáridos/biosíntesis , N-Acilneuraminato Citidililtransferasa/metabolismo , N-Acilneuraminato Citidililtransferasa/química , Reactores Biológicos , Leche Humana/química , Leche Humana/metabolismo , Lactosa/química , Lactosa/análogos & derivados , Lactosa/metabolismo , Concentración de Iones de Hidrógeno , beta-D-Galactósido alfa 2-6-SialiltransferasaRESUMEN
The eukaryotic asparagine (N)-linked glycan is pre-assembled as a fourteen-sugar oligosaccharide on a lipid carrier in the endoplasmic reticulum (ER). Seven sugars are first added to dolichol pyrophosphate (PP-Dol) on the cytoplasmic face of the ER, generating Man5GlcNAc2-PP-Dol (M5GN2-PP-Dol). M5GN2-PP-Dol is then flipped across the bilayer into the lumen by an ER translocator. Genetic studies identified Rft1 as the M5GN2-PP-Dol flippase in vivo but are at odds with biochemical data suggesting Rft1 is dispensable for flipping in vitro. Thus, the question of whether Rft1 plays a direct or an indirect role during M5GN2-PP-Dol translocation has been controversial for over two decades. We describe a completely reconstituted in vitro assay for M5GN2-PP-Dol translocation and demonstrate that purified Rft1 catalyzes the translocation of M5GN2-PP-Dol across the lipid bilayer. These data, combined with in vitro results demonstrating substrate selectivity and rft1∆ phenotypes, confirm the molecular identity of Rft1 as the M5GN2-PP-Dol ER flippase.
Asunto(s)
Retículo Endoplásmico , Retículo Endoplásmico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Transporte Biológico , Oligosacáridos/metabolismo , Fosfatos de Dolicol/metabolismo , Fosfatos de Dolicol/genética , Membrana Dobles de Lípidos/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Proteínas de Transferencia de Fosfolípidos/genética , Membranas Intracelulares/metabolismo , LipopolisacáridosRESUMEN
High-altitude myocardial injury (HAMI) represents a critical form of altitude illness for which effective drug therapies are generally lacking. Notoginsenoside R1, a prominent constituent derived from Panax notoginseng, has demonstrated various cardioprotective properties in models of myocardial ischemia/reperfusion injury, sepsis-induced cardiomyopathy, cardiac fibrosis, and myocardial injury. The potential utility of notoginsenoside R1 in the management of HAMI warrants prompt investigation. Following the successful construction of a HAMI model, a series of experimental analyses were conducted to assess the effects of notoginsenoside R1 at dosages of 50â¯mg/Kg and 100â¯mg/Kg. The results indicated that notoginsenoside R1 exhibited protective effects against hypoxic injury by reducing levels of CK, CK-MB, LDH, and BNP, leading to improved cardiac function and decreased incidence of arrhythmias. Furthermore, notoginsenoside R1 was found to enhance Nrf2 nuclear translocation, subsequently regulating the SLC7A11/GPX4/HO-1 pathway and iron metabolism to mitigate ferroptosis, thereby mitigating cardiac inflammation and oxidative stress induced by high-altitude conditions. In addition, the application of ML385 has confirmed the involvement of Nrf2 nuclear translocation in the therapeutic approach to HAMI. Collectively, the advantageous impacts of notoginsenoside R1 on HAMI have been linked to the suppression of ferroptosis via Nrf2 nuclear translocation signaling.
Asunto(s)
Ferroptosis , Ginsenósidos , Proteína 1 Asociada A ECH Tipo Kelch , Factor 2 Relacionado con NF-E2 , Transducción de Señal , Factor 2 Relacionado con NF-E2/metabolismo , Ginsenósidos/farmacología , Animales , Ferroptosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Masculino , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas Sprague-Dawley , Mal de Altura/tratamiento farmacológico , Mal de Altura/metabolismo , Ratas , Altitud , Modelos Animales de EnfermedadRESUMEN
Glycans, along with proteins, nucleic acids, and lipids, constitute the four fundamental classes of biomacromolecules found in living organisms. Generally, glycans are attached to proteins or lipids to form glycoconjugates that perform critical roles in various biological processes. Automatic synthesis of glycans is essential for investigation into structure-function relationships of glycans. In this study, we presented a method that integrated magnetic bead-based manipulation and modular chemoenzymatic synthesis of human milk oligosaccharides (HMOs), on a DMF (Digital Microfluidics) platform. On the DMF platform, enzymatic modular reactions were conducted in solution, and purification of products or intermediates was achieved by using DEAE magnetic beads, circumventing the intricate steps required for traditional solid-phase synthesis. With this approach, we have successfully synthesized eleven HMOs with highest yields of up to >90% on the DMF platform. This study would not only lay the foundation for OPME synthesis of glycans on the DMF platform, but also set the stage for developing automated enzymatic glycan synthesizers based on the DMF platform.
RESUMEN
BACKGROUND: The immune reconstitution after allogeneic hematopoietic stem cell transplantation (allo-HSCT) is crucial for preventing infections and relapse and enhancing graft-versus-tumor effects. B cells play an important role in humoral immunity and immune regulation, but their reconstitution after allo-HSCT has not been well studied. METHODS: In this study, we analyzed the dynamics of B cells in 252 patients who underwent allo-HSCT for 2 years and assessed the impact of factors on B-cell reconstitution and their correlations with survival outcomes, as well as the development stages of B cells in the bone marrow and the subsets in the peripheral blood. RESULTS: We found that the B-cell reconstitution in the bone marrow was consistent with the peripheral blood (p = 0.232). B-cell reconstitution was delayed by the male gender, age >50, older donor age, the occurrence of chronic and acute graft-versus-host disease, and the infections of fungi and cytomegalovirus. The survival analysis revealed that patients with lower B cells had higher risks of death and relapse. More importantly, we used propensity score matching to obtain the conclusion that post-1-year B-cell reconstitution is better in females. Meanwhile, using mediation analysis, we proposed the age-B cells-survival axis and found that B-cell reconstitution at month 12 posttransplant mediated the effect of age on patient survival (p = 0.013). We also found that younger patients showed more immature B cells in the bone marrow after transplantation (p = 0.037). CONCLUSION: Our findings provide valuable insights for optimizing the management of B-cell reconstitution and improving the efficacy and safety of allo-HSCT.
Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Femenino , Humanos , Masculino , Trasplante Homólogo , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Enfermedad Injerto contra Huésped/etiología , Enfermedad Injerto contra Huésped/prevención & control , Enfermedad Injerto contra Huésped/epidemiología , Linfocitos B , RecurrenciaRESUMEN
Eukaryotic sialyltransferases play key roles in many physiological and pathological events. The expression of active human recombinant sialyltransferases in bacteria is still challenging. In the current study, the genes encoding human N-acetylgalactosaminide α2,6-sialyltransferase V (hST6GalNAc V) and N-acetylgalactosaminide α2,6-sialyltransferase VI (hST6GalNAc VI) lacking the N-terminal transmembrane domains were cloned into the expression vectors, pET-32a and pET-22b, respectively. Soluble and active forms of recombinant hST6GalNAc V and hST6GalNAc VI when coexpressed with the chaperone plasmid pGro7 were successfully achieved in Escherichia coli. Further, lactose (Lac), Lacto-N-triose II (LNT II), lacto-N-tetraose (LNT), and sialyllacto-N-tetraose a (LSTa) were used as acceptor substrates to investigate their activities and substrate specificities. Unexpectedly, both can transfer sialic acid onto all those substrates. Compared with hST6GalNAc V expressed in the mammalian cells, the recombinant two α2,6-sialyltransferases in bacteria displayed flexible substrate specificities and lower enzymatic efficiency. In addition, an important human milk oligosaccharide disialyllacto-N-tetraose (DSLNT) can be synthesized by both human α2,6-sialyltransferases expressed in E. coli using LSTa as an acceptor substrate. To the best of our knowledge, these two active human α2,6-sialyltransferases enzymes were expressed in bacteria for the first time. They showed a high potential to be applied in biotechnology and investigating the molecular mechanisms of biological and pathological interactions related to sialylated glycoconjugates.
Asunto(s)
Escherichia coli , Proteínas Recombinantes , Sialiltransferasas , Humanos , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Lactosa/metabolismo , Oligosacáridos/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Sialiltransferasas/genética , Sialiltransferasas/metabolismo , Especificidad por SustratoRESUMEN
In China, 45% of adolescents with obesity develop fatty liver disease, a condition that increases the long-term risk of developing cirrhosis and liver cancer. Although the factors triggering nonalcoholic fatty liver disease (NAFLD) vary in children, the composition of intestinal microflora has been found to play an increasingly important role. However, evidence is limited on the prevalence of nonalcoholic fatty liver (NAFL) and nonalcoholic steatohepatitis (NASH) in Chinese children. Therefore, this study aimed to evaluate the fecal microbiome of Chinese children with NAFLD and further analyze the potential of flora in regulating NAFLD-related symptoms and metabolic functions. Specifically, the study applied a 16S rRNA and metagenomic sequencing to the fecal samples of pediatric patients with NAFLD, NASH, and NAFL, as well as healthy controls, to explore the correlation among NAFLD-related indexes, metabolic pathways, and gut flora. The findings showed that some fecal microbiota had a negative correlation with body mass index, and various NAFLD-related bacteria, including Lachnoclostridium, Escherichia-Shigella, and Faecalibacterium prausnitzii, were detected. Consequently, the study concluded that the variation in gut microbiota might be more important in improving NAFLD/NASH compared with single species, providing a microbiota diagnostic profile of NAFLD/NASH.IMPORTANCEThis study aims to characterize the gut microbiota in Chinese children with nonalcoholic fatty liver disease (NAFLD) through 16S rRNA and metagenomic sequencing. The results highlight the association between fecal microbiota and NAFLD in Chinese children, demonstrating distinct characteristics compared to adults and children from other countries. Based on the sequencing data from our cohort's fecal samples, we propose a microbiota model with a high area under the curve for distinguishing between NAFLD and healthy individuals. Furthermore, our follow-up study reveals that changes in the relative abundance of microbial biomarkers in this model are consistent with variations in patients' body mass index. These findings suggest the potential utility of the microbiota model and microbial biomarkers for diagnosing and treating NAFLD in children.
Asunto(s)
Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico , Adulto , Adolescente , Humanos , Niño , ARN Ribosómico 16S , Estudios de Seguimiento , Biomarcadores/metabolismo , Hígado/metabolismoRESUMEN
Purpose: To investigate the value of apolipoprotein A1 (ApoA1), apolipoprotein B (ApoB), and ApoA1/B ratio in pathogenic diagnosis of chronic obstructive pulmonary disease (COPD) complicated by acute lower respiratory tract infection, assisting comprehensive disease assessment. Patients and Methods: The study enrolled 171 COPD patients with acute lower respiratory tract infections, 35 COPD patients without acute lower respiratory tract infections, and 41 healthy controls. Correlation analysis and binary logistic regression were used to assess the roles of various factors in COPD with acute lower respiratory tract infections. Receiver operating characteristic (ROC) curves were plotted and area under curves (AUC) values were calculated to evaluate the predictive performance. Results: Infections were the cause of alterations in ApoA1, ApoB and ApoA1/B index. In correlation analysis for pathogenic diagnosis of COPD complicated by acute lower respiratory infections, age, ApoA1, ApoA1/B ratio, lymphocyte count (LYMPH), neutrophil count (NEUT), C-reactive protein (CRP), erythrocyte sedimentation rate (ESR) and endotoxin were significantly correlated. For predicting COPD complicated by acute lower respiratory tract bacterial infection, ApoA1 had the highest area under the ROC curve (AUC: 0.889), with sensitivity and specificity of 82.9% and 83.9%, respectively. The combination of NEUT and ApoA1 improved the prediction efficacy (AUC: 0.909; sensitivity/specificity: 85.1%/85.7%). Conclusion: ApoA1, ApoB, and ApoA1/B ratio are good indicators for predicting pathogens in COPD complicated by acute lower respiratory tract infection, especially ApoA1 which has high predictive value.
Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Infecciones del Sistema Respiratorio , Humanos , Apolipoproteína A-I , Apolipoproteínas B , Biomarcadores , Estudios Transversales , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Infecciones del Sistema Respiratorio/diagnósticoRESUMEN
The objective of this experiment was to evaluate the influence of nanoselenium (NANO-Se) addition on milk production, milk fatty acid synthesis, the development and metabolism regulation of mammary gland in dairy cows. Forty-eight Holstein dairy cows averaging 720 ± 16.8 kg of body weight, 66.9 ± 3.84 d in milk (dry matter intake [DIM]) and 35.2 ± 1.66 kg/d of milk production were divided into four treatments blocked by DIM and milk yields. Treatments were control group, low-Se (LSe), medium-Se (MSe) and high-Se (HSe) with 0, 0.1, 0.2 and 0.3 mg Se, respectively, from NANO-Se per kg dietary dry matter (DM). Production of energy- and fat-corrected milk (FCM) and milk fat quadratically increased (p < 0.05), while milk lactose yields linearly increased (p < 0.05) with increasing NANO-Se addition. The proportion of saturated fatty acids (SFAs) linearly decreased (p < 0.05), while proportions of monounsaturated fatty acids (MUFAs) linearly increased and polyunsaturated fatty acids (PUFAs) quadratically increased. The digestibility of dietary DM, organic matter (OM), crude protein (CP), neutral detergent fiber (NDF) and acid detergent fiber (ADF) quadratically increased (p < 0.05). Ruminal pH quadratically decreased (p < 0.01), while total VFA linearly increased (p < 0.05) with increasing NANO-Se addition. The acetic to propionic ratio decreased (p < 0.05) linearly due to the unaltered acetic molar percentage and a quadratical increase in propionic molar percentage. The activity of CMCase, xylanase, cellobiase and pectinase increased linearly (p < 0.05) following NANO-Se addition. The activity of α-amylase increased linearly (p < 0.01) with an increase in NANO-Se dosage. Blood glucose, total protein, estradiol, prolactin, IGF-1 and Se linearly increased (p < 0.05), while urea nitrogen concentration quadratically decreased (p = 0.04). Moreover, the addition of Se at 0.3 mg/kg from NANO-Se promoted (p < 0.05) mRNA and protein expression of PPARγ, SREBP1, ACACA, FASN, SCD, CCNA2, CCND1, PCNA, Bcl-2 and the ratios of p-ACACA/ACACA and BCL2/BAX4, but decreased (p < 0.05) mRNA and protein expressions of Bax, Caspase-3 and Caspase-9. The results suggest that milk production and milk fat synthesis increased by NANO-Se addition by stimulating rumen fermentation, nutrients digestion, gene and protein expressions concerned with milk fat synthesis and mammary gland development.
Asunto(s)
Detergentes , Lactancia , Femenino , Bovinos , Animales , Lactancia/fisiología , Detergentes/metabolismo , Detergentes/farmacología , Digestión/fisiología , Leche/metabolismo , Dieta/veterinaria , Nutrientes , Suplementos Dietéticos , ARN Mensajero/metabolismo , Rumen/metabolismo , Alimentación Animal/análisisRESUMEN
This experiment was to evaluate the influence of sodium butyrate (SB) addition on milk production, ruminal fermentation, nutrient digestion, and the development and metabolism regulation of the mammary gland in dairy cows. Forty Holstein dairy cows averaging 710 ± 18.5 kg body weight, 72.8 ± 3.66 d in milk (DIM), and 41.4 ± 1.42 kg/d milk production were divided into four treatments blocked by DIM and milk production. Treatments were control group, low SB, medium SB, and high SB with 0, 100, 200 and 300 g/d of SB addition per cow, respectively. The study lasted for 105 d. Production of milk, milk protein and lactose quadratically increased (P < 0.05), while fat-corrected milk, energy-corrected milk and milk fat yields linearly increased (P < 0.05) with increasing SB addition. The digestibility of dietary dry matter, organic matter, and crude protein linearly increased (P < 0.05), whereas the digestibility of ether extract, neutral detergent fibre, and acid detergent fibre quadratically increased (P < 0.05). Ruminal pH quadratically decreased (P = 0.04), while total volatile fatty acids (VFA) quadratically increased (P = 0.03) with increasing SB addition. The acetic acid to propionic acid ratio increased (P = 0.03) linearly due to the unaltered acetic acid molar percentage and a linear decrease in propionic acid molar percentage. Ruminal enzymatic activity of carboxymethyl-cellulase and α-amylase, populations of total bacteria, total anaerobic fungi, total protozoa, Ruminococcus albus, R. flavefaciens, Butyrivibrio fibrisolvens, Fibrobacter succinogenes, and Ruminobacter amylophilus linearly increased (P < 0.05). Blood glucose, urea nitrogen, and non-esterified fatty acids linearly decreased (P < 0.05), while total protein concentration linearly increased (P = 0.04). Moreover, the addition of SB at 200 g/d promoted (P < 0.05) mRNA and protein expression of PPARγ, SREBF1, ACACA, FASN, SCD, CCNA2, CCND1, PCNA, Bcl-2, GPR41, and the ratios of p-Akt/Akt and p-mTOR/mTOR, but decreased (P < 0.05) mRNA and protein expressions of Bax, caspase-3, and caspase-9. The results suggest that milk production and milk fat synthesis increased with SB addition by stimulating rumen fermentation, nutrient digestion, gene and protein expressions concerned with milk fat synthesis and mammary gland development.
RESUMEN
Eleutheroside E (EE) is a primary active component of Acanthopanax senticosus, which has been reported to inhibit the expression of inflammatory genes, but the underlying mechanisms remain elusive. High-altitude pulmonary edema (HAPE) is a severe complication of high-altitude exposure occurring after ascent above 2500 m. However, effective and safe preventative measures for HAPE still need to be improved. This study aimed to elucidate the preventative potential and underlying mechanism of EE in HAPE. Rat models of HAPE were established through hypobaric hypoxia. Mechanistically, hypobaric hypoxia aggravates oxidative stress and upregulates (pro)-inflammatory cytokines, activating NOD-like receptor protein 3 (NLRP3) inflammasome-mediated pyroptosis, eventually leading to HAPE. EE suppressed NLRP3 inflammasome-mediated pyroptosis by inhibiting the nuclear translocation of nuclear factor kappa-Β (NF-κB), thereby protecting the lung from HAPE. However, nigericin (Nig), an NLRP3 activator, partially abolished the protective effects of EE. These findings suggest EE is a promising agent for preventing HAPE induced by NLRP3 inflammasome-mediated pyroptosis.
RESUMEN
High-altitude pulmonary edema (HAPE) is a potentially fatal disease. Notoginsenoside R1 is a novel phytoestrogen with anti-inflammatory, antioxidant and anti-apoptosis properties. However, its effects and underlying mechanisms in the protection of hypobaric hypoxia-induced HAPE rats remains unclear. This study aimed to explore the protective effects and underlying mechanisms of Notoginsenoside R1 in hypobaric hypoxia-induced HAPE. We found that Notoginsenoside R1 alleviated the lung tissue injury, decreased lung wet/dry ratio, and reduced inflammation and oxidative stress. Additionally, Notoginsenoside R1 ameliorated the changes in arterial blood gas, decreased the total protein concentration in bronchoalveolar lavage fluid, and inhibited the occurrence of apoptosis caused by HAPE. In the process of further exploration of the mechanism, it was found that Notoginsenoside R1 could promote the activation of ERK1/2-P90rsk-BAD signaling pathway, and the effect of Notoginsenoside R1 was attenuated after the use of ERK1/2 inhibitor U0126. Our study indicated that the protective effects of Notoginsenoside R1 against HAPE were mainly related to the inhibition of inflammation, oxidative stress, and apoptosis. Notoginsenoside R1 may be a potential candidate for preventing HAPE.
Asunto(s)
Altitud , Edema Pulmonar , Ratas , Animales , Sistema de Señalización de MAP Quinasas , Edema Pulmonar/prevención & control , Hipoxia/complicaciones , Hipoxia/metabolismo , InflamaciónRESUMEN
A Gram-negative, aerobic, motile by flagellum, and rod-shaped bacterium, designated ASW11-7T, was isolated from coastal surface seawater sample collected from the Yellow Sea, PR China. Strain ASW11-7T grew optimally at 37â, 4.0% (w/v) NaCl and pH 7.0. Phylogenetic analysis based on the 16S rRNA gene sequences revealed that strain ASW11-7T belongs to the genus Alteromonas and most closely related to Alteromonas ponticola MYP5T (99.6% similarity), followed by Alteromonas confluentis DSSK2-12T (98.2%), Alteromonas lipolytica JW12T (98.2%), and Alteromonas hispanica F-32T (98.0%). The draft genome of strain ASW11-7T had a length of 3,530,922 bp with a G + C content of 44.9%, predicting 3108 coding sequences, 5 rRNA, 4 ncRNAs, 49 tRNAs genes, and 18 pseudogenes. The average nucleotide identity and digital DNA-DNA hybridization values between genomic sequences of strain ASW11-7T and closely related species of Alteromonas were in ranges of 66.9-77.8% and 18.3-27.5%, respectively. The major fatty acids of strain ASW11-7T were C16:0, summed feature 3 (C16:1ω7c/C16:1ω6c), and summed feature 8 (C18:1ω7c/C18:1ω6c). The predominant respiratory quinone was Q-8 and the major polar lipids were phosphatidylethanolamine and phosphatidylglycerol. Based on the phenotypic properties, genotypic distinctiveness, and chemotaxonomic features, strain ASW11-7T is considered to represent a novel Alteromonas species, for which the name Alteromonas aquimaris sp. nov. is proposed. The type strain is ASW11-7T (= KCTC 92853T = MCCC 1K07240T).
Asunto(s)
Alteromonas , Alteromonas/genética , Filogenia , ARN Ribosómico 16S/genética , China , ADNRESUMEN
Considering the synergistic effect of pantothenate and thiamine on the regulation of energy metabolism, this study investigated the influences of coated calcium pantothenate (CCP) and coated thiamine (CT) on milk production and composition, nutrients digestion, and expressions of genes involved in fatty acids synthesis in mammary glands. Forty-four multiparous Chinese Holstein cows (2.8 ± 0.19 of parity, 772 ± 12.3 kg of body weight [BW], 65.8 ± 8.6 days in milk [DIM] and 35.3 ± 1.9 kg/d of milk production, mean ± SD) were blocked by parity, BW, DIM, and milk production, and they were allocated into one of four treatments in a 2 × 2 factorial block design. Additional CCP (0 mg/kg [CCP-] or 55 mg/kg dry matter [DM] of calcium pantothenate from CCP [CCP+]) and CT (0 g/kg [CT-] or 5.3 mg/kg DM of thiamine from CT [CT+]) were hand-mixed into the top one-third of total mixed ration. Both CCP and CT additives increased milk production, fat content, true protein, and lactose by promoting nutrient digestibility. The CCP or/and CT supplementation induced the elevation of C11:0, C12:0, C13:0, C14:0, C14:1, C15:0, C15:1, C16:00, C16:1, C24:00, C24:1 fatty acids, saturated fatty acid, and C4-16 fatty acid contents in milk fat; but it decreased C17-22 fatty acid content. Ruminal total VFA content was increased, but pH was decreased by both additives. The ruminal fermentation pattern was altered, and a tendency of acetate formation was implied by the increased acetate-to-propionate ratio after both additives' supplementation. The expressions of PPARγ, SREBPF1, ACACA, FASN, SCD, and FABP3 mRNAs were enhanced by CCP or CT addition, but the relative expression of LPL mRNA was upregulated by CT addition only. Additionally, blood glucose, triglyceride, insulin-like growth factor-1, and total antioxidant capacity were promoted by both additives. The combination of CCP and CT more effectively increased the ruminal total VFA concentration, the acetate to propionate ratio, and blood glucose level, and decreased ammoniacal nitrogen concentration than that achieved by CCP or CT alone. The results suggested that CCP and CT supplementation stimulated lactation performance by promoting nutrient digestion and fatty acid synthesis in the mammary glands.
RESUMEN
A Gram-negative, aerobic, short rod-shaped bacterium, designated ASW11-19T, was isolated from a coastal seawater sample of the Yellow Sea, PR China. Strain ASW11-19T grew optimally at 37 °C, 3.0-5.0% (w/v) NaCl and pH 7.5. Phylogenetic analysis based on the 16S rRNA gene sequences revealed that strain ASW11-19T belonged to the genus Alteromonas and most closely related to Alteromonas profundi 345S023T and Alteromonas fortis 1T (98.4%, both). The draft genome was 3.55 Mb with 3150 protein-coding genes, 18 contigs, and a DNA G+C content was 44.4%. The digital DNA-DNA hybridization and average nucleotide identity values were below the species-delineating thresholds. The major fatty acids were summed feature 3 (C16:1ω7c/C16:1ω6c), summed feature 8 (C18:1ω7c/C18:1ω6c), and C16:0. The sole respiratory quinone was ubiquinone 8. The polar lipids were phosphatidylethanolamine, phosphatidylglycerol, phospholipid, and two unidentified lipids. Based on these genomic data, phenotypic and chemotaxonomic properties, strain ASW11-19T is considered to represent a novel species of the genus Alteromonas. The name Alteromonas salexigens sp.nov. is proposed for ASW11-19T (=MCCC 1K07239T=KCTC 92247T).
Asunto(s)
Alteromonas , Alteromonas/genética , Filogenia , ARN Ribosómico 16S/genética , Ácidos Grasos , ADNRESUMEN
The experiment investigated the impacts of FA on the proliferation of bovine mammary gland epithelial cells (BMECs) and to investigate the underlying mechanisms. Supplementation of 10 µM FA elevated the mRNA expression of proliferating cell nuclear antigen (PCNA), cyclin A2 and cyclin D1, and protein expression of PCNA and Cyclin A1. The mRNA and protein expression of B-cell lymphoma-2 (BCL2) and the BCL2 to BCL2 associated X 4 (BAX4) ratio elevated, while that of BAX, Caspase-3 and Caspase-9 reduced by FA. Both Akt and mTOR signaling pathways were activated by FA. Moreover, the stimulation of BMECs proliferation, the alteration of proliferative genes and protein expression, the change of apoptotic genes and protein expression, and the activation of mTOR signaling pathway caused by FA were obstructed by Akt inhibitor. Suppression of mTOR with Rapamycin reversed the FA-modulated promotion of BMECs proliferation and change of proliferous genes and protein expression, with no impact on mRNA or proteins expression related to apoptosis and FA-activated Akt signaling pathway. Supplementation of rumen-protected FA in cow diets evaluated milk yields and serum insulin-like growth factor-1 and estradiol levels. The results implied that the proliferation of BMECs was stimulated by FA through the Akt-mTOR signaling pathway.