Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.528
Filtrar
1.
Front Nutr ; 11: 1378853, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39279900

RESUMEN

Background: Previous studies revealed that vitamin K might help maintain muscle homeostasis, but this association has received little attention. We aimed to explore the associations of vitamin K intake with skeletal muscle mass and strength. Methods: We included cross-sectional data from the U.S. National Health and Nutrition Examination Survey (NHANES, 2011-2018). Vitamin K intake was assessed via 24-h recall. Covariate-adjusted multiple linear regression and restricted cubic splines were used to evaluate the associations of dietary vitamin K intake with skeletal muscle mass and strength, measured by dual-energy X-ray absorptiometry and handgrip dynamometer, respectively. Results: Dietary vitamin K intake was positively associated with skeletal muscle mass in males (ß = 0.05747, p = 0.0204) but not in females. We also revealed a positive association between dietary vitamin K intake and handgrip strength within the range of 0-59.871 µg/d (P nonlinear = 0.049). However, beyond this threshold, increasing vitamin K intake did not cause additional handgrip strength improvements. Conclusion: We provided evidence for a positive relationship between dietary vitamin K intake and skeletal muscle mass in males. Moreover, our study revealed a nonlinear relationship between dietary vitamin K intake and handgrip strength, highlighting an optimal intake range.

2.
J Am Chem Soc ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39293091

RESUMEN

Owing to substantial advances in the past several decades, transition-metal-catalyzed asymmetric reactions have garnered considerable attention as pivotal methods for constructing chiral molecules from abundant, readily available achiral counterparts. These advances are largely attributed to the development of chiral ligands that control stereochemistry through steric repulsion and other noncovalent interactions between the ligands and functional groups or prochiral centers on the substrates. However, stereocontrol weakens dramatically with increasing distance between the reaction site and the functional group or prochiral center. Herein, we report a symphonic strategy for remote stereocontrol of Rh(III)-catalyzed asymmetric benzylic C-H bond addition reactions of diarylmethanes in which the two aryl motifs differ at the meta and/or para position. Specifically, catalysts bearing a new type of chiral cyclopentadienyl (Cp) ligand differentiate between the two aromatic rings of the diarylmethane by arene-selective η6 coordination, setting up an opportunity for ligand-controlled stereoselective benzylic deprotonation and subsequent stereoselective addition to the 1,1-bis(arylsulfonyl)ethylene.

3.
Sci Rep ; 14(1): 21552, 2024 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285240

RESUMEN

Intestinal microbiota imbalance plays an important role in the progression of obstructive sleep apnea (OSA), and is considered to be the main mediator that triggers metabolic comorbidities. Here, we analyzed the changes in intestinal microbiota in patients with different severities of OSA based on apnea hypopnea index (AHI) classification, and explored the role of intestinal microbiota in the severity of OSA. This study included 19 healthy volunteers and 45 patients with OSA [5 ≤ AHI < 15 (n = 14), 15 ≤ AHI < 30 (n = 13), AHI ≥ 30 (n = 18)]. Relevant sleep monitoring data and medical history data were collected, and microbial composition was analyzed using 16S rRNA high-throughput sequencing technology. The diversity analysis of intestinal microbiota among different groups of people was conducted, including alpha diversity, beta diversity, species diversity, and marker species as well as differential functional metabolic pathway prediction analysis. With the increase of AHI classification, the alpha diversity in patients with OSA significantly decreased. The results revealed that the severity of OSA is associated with differences in the structure and composition of the intestinal microbiota. The abundance of bacteria producing short-chain fatty acids (such as Bacteroides, Ruminococcacea, and Faecalibacterium) in severe OSA is significantly reduced and a higher ratio of Firmicutes to Bacteroidetes. Random forest analysis showed that Parabacteroides was a biomarker genus with important discriminatory significance. The differential metabolic pathway prediction function shows that the main function of maintaining intestinal microbiota homeostasis is biosynthetic function. Our results show that the differences in the composition of intestinal microbiota in patients with different severities of OSA are mainly related to short-chain fatty acid-producing bacteria. These changes may play a pathological role in OSA combined with metabolic comorbidities.


Asunto(s)
Microbioma Gastrointestinal , ARN Ribosómico 16S , Apnea Obstructiva del Sueño , Humanos , Microbioma Gastrointestinal/genética , Apnea Obstructiva del Sueño/microbiología , Masculino , Persona de Mediana Edad , Femenino , Adulto , ARN Ribosómico 16S/genética , Índice de Severidad de la Enfermedad , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Estudios de Casos y Controles , Heces/microbiología
4.
World J Gastrointest Surg ; 16(8): 2649-2661, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39220059

RESUMEN

BACKGROUND: Postoperative pulmonary complications (PPCs) are common in patients who undergo colorectal surgery. Studies have focused on how to accurately diagnose and reduce the incidence of PPCs. Lung ultrasound has been proven to be useful in preoperative monitoring and postoperative care after cardiopulmonary surgery. However, lung ultrasound has not been studied in abdominal surgeries and has not been used with wearable devices to evaluate the influence of postoperative ambulation on the incidence of PPCs. AIM: To investigate the relationship between lung ultrasound scores, PPCs, and postoperative physical activity levels in patients who underwent colorectal surgery. METHODS: In this prospective observational study conducted from November 1, 2019 to August 1, 2020, patients who underwent colorectal surgery underwent daily bedside ultrasonography from the day before surgery to postoperative day (POD) 5. Lung ultrasound scores and PPCs were recorded and analyzed to investigate their relationship. Pedometer bracelets measured the daily movement distance for 5 days post-surgery, and the correlation between postoperative activity levels and lung ultrasound scores was examined. RESULTS: Thirteen cases of PPCs was observed in the cohort of 101 patients. The mean (standard deviation) peak lung ultrasound score was 5.32 (2.52). Patients with a lung ultrasound score of ≥ 6 constituted the high-risk group. High-risk lung ultrasound scores were associated with an increased incidence of PPCs after colorectal surgery (logistic regression coefficient, 1.715; odds ratio, 5.556). Postoperative movement distance was negatively associated with the lung ultrasound scores [Spearman's rank correlation coefficient (r), -0.356, P < 0.05]. CONCLUSION: Lung ultrasound effectively evaluates pulmonary condition post-colorectal surgery. Early ambulation and respiratory exercises in the initial two PODs will reduce PPCs and optimize postoperative care in patients undergoing colorectal surgery.

5.
Cancer Res ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39226516

RESUMEN

Extracellular vesicles (EVs) derived from cancer cells are crucial mediators of intercellular communication during tumor progression. The cargo in tumor-derived EVs that facilitates the establishment of a tumor-supportive microenvironment could serve as a therapeutic target to improve cancer treatment. Here, we demonstrated that hepatocellular carcinoma (HCC) cells secreted the acyl-CoA synthetase ACSL4 in large extracellular vesicles (lEVs) to modulate tumor-microenvironment interactions that promote HCC progression. HCC-derived lEV ACSL4 increased the intracellular abundance of polyunsaturated fatty acid-containing lipids and remodeled the lipid profile to potentiate lipid peroxidation in peritumoral hepatocytes, resulting in hepatocyte senescence accompanied by the senescence-associated secretory phenotype (SASP). Depletion of senescent hepatocytes by senolytic treatment suppressed tumor progression. In HCC cells, SREBP2-mediated transcriptional activation upregulated ACSL4 expression, and Akt-mediated phosphorylation of ACSL4 induced its packaging into lEVs by augmenting its interaction with Annexin A2. This study identified the critical regulatory function of ACSL4 secreted from HCC cells in inducing lipid remodeling and senescence in hepatocytes to support HCC progression, suggesting that targeting lEV ACSL4 is a potential therapeutic strategy for HCC.

6.
Artículo en Inglés | MEDLINE | ID: mdl-39225766

RESUMEN

BACKGROUND: There is no consensus on the cause and effect of systemic chronic inflammation (SCI) regarding chronic obstructive pulmonary disease (COPD). The impact of second-hand smoke (SHS) on COPD has reached inconsistent conclusions. METHODS: The China Kadoorie Biobank cohort was followed up from the 2004-08 baseline survey to 31 December 2018. Among the selected 445,523 participants in the final analysis, Cox and linear regressions were performed to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) of tobacco exposure with COPD risk and baseline levels of log-transformed inflammatory factors [ßs (95% CIs)], respectively. RESULTS: Participants were followed up for a median of 12.1 years and 11,825 incident COPD events were documented. Ever-smokers were associated with a higher risk of COPD than non-smokers with non-weekly SHS exposure. A younger age to start smoking, a greater amount of daily tobacco consumption, and deeper inhalation were associated with increased risk of COPD and correlated with elevated levels of plasma high-sensitivity C-reactive protein (hs-CRP, all Ptrend < 0.001) even two years before COPD onset. Among former smokers, COPD risk declined with longer smoking cessation (Ptrend < 0.001) and those quitting smoking for over ten years presented no difference in COPD risk and hs-CRP level from non-smokers [HR (95% CI) = 1.05 (0.89, 1.25), ß (95% CI) = 0.17 (- 0.09, 0.43)]. Among non-smokers, weekly SHS exposure was associated with a slightly higher COPD risk [HR (95% CI) = 1.06 (1.01, 1.12)]. CONCLUSIONS: Incremental exposure to tobacco smoke was related to elevated SCI level before COPD onset, then an increase in COPD susceptibility. Quitting smoking as early as possible is suggested as a practical approach to reducing COPD risk in smokers. Given the high prevalence of both COPD and SHS exposure, the risk associated with SHS exposure deserves attention.

7.
Inorg Chem ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39258754

RESUMEN

The incorporation of difluoroboron ß-diketonate and tetraphenylethene under a facile Knoevenagel condensation reaction afforded one new D-π-A-π-D complex TCBF with high aggregation-induced emission (AIE) activity. The TCBF film can maintain a high photocurrent after long-term (500 min) photoelectronic measurements. The successful fabrication of a red LED device makes it a promising candidate for high-performance solid-state lighting.

8.
Food Res Int ; 194: 114853, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39232503

RESUMEN

Cultured fat is an important part of cultured meat, and the ability of adipose-derived mesenchymal stem cells (ADSCs) to differentiate into mature adipose tissue affects the quality of cultured fat. Thus, the primary aim of this study was to screen for combinations of differentiation-inducing factors (DIF) using single-factor experiment and orthogonal experimental design under two-dimensional culture conditions for ADSCs. The results showed that a combination of DIF consisting of 1 µmol/L dexamethasone, 0.1 mmol/L 3-isobutyl-1-methylxanthine, 10 µg/mL insulin, 0.1 mmol/L indomethacin, and 2 µmol/L rosiglitazone was a good choice for the differentiation of ADSCs. An combination of DIF was applied to the preparation of cultured fat with collagen as scaffolds. Forty-eight fatty acids were detected in cultured fat by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Among them, the content of twenty-one fatty acids in cultured fat was significantly higher than that of conventional porcine subcutaneous adipose tissue (P < 0.05), and the content of 14 fatty acids was not significantly different (P > 0.05). The ratio of ω-6 polyunsaturated fatty acids content to ω-3 polyunsaturated fatty acids content was 1.23:1, which meant cultured fat was beneficial for human health. This study provides a method to improve the differentiation ability of ADSCs while also providing a reference for indicating the nutritional value of cultured fat.


Asunto(s)
Diferenciación Celular , Ácidos Grasos , Células Madre Mesenquimatosas , Animales , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Porcinos , Ácidos Grasos/análisis , Células Cultivadas , Tejido Adiposo/citología , Dexametasona/farmacología , Espectrometría de Masas en Tándem , Insulina/metabolismo , Rosiglitazona/farmacología , Indometacina/farmacología , 1-Metil-3-Isobutilxantina/farmacología , Cromatografía Líquida de Alta Presión
9.
Artículo en Inglés | MEDLINE | ID: mdl-39246141

RESUMEN

Human tissue-resident memory T (TRM) cells play a crucial role in protecting the body from infections and cancers. Recent research observed increased numbers of TRM cells in the lung tissues of idiopathic pulmonary fibrosis patient. However, the functional consequences of TRM cells in pulmonary fibrosis remain unclear. Here, we found that the numbers of TRM cells, especially the CD8+ subset, were increased in the mouse lung with bleomycin-induced pulmonary fibrosis. Increasing or decreasing CD8+ TRM cells in mouse lungs accordingly altered the severity of fibrosis. In addition, adoptive transfer of CD8+ T cells containing a large number of CD8+ TRM cells from fibrotic lungs was sufficient to induce pulmonary fibrosis in control mice. Treatment with CCL18 to induced CD8+ TRM cell expansion and exacerbated fibrosis, while blocking CCR8 prevented CD8+ TRM recruitment and inhibited pulmonary fibrosis. In conclusion, CD8+ TRM cells are essential for bleomycin-induced pulmonary fibrosis, and targeting CCL18/CCR8/CD8+ TRM cells may be a potential therapeutic approach.

10.
Trends Ecol Evol ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39242333

RESUMEN

Group-living animals sleep together, yet most research treats sleep as an individual process. Here, we argue that social interactions during the sleep period contribute in important, but largely overlooked, ways to animal groups' social dynamics, while patterns of social interaction and the structure of social connections within animal groups play important, but poorly understood, roles in shaping sleep behavior. Leveraging field-appropriate methods, such as direct and video-based observation, and increasingly common on-animal motion sensors (e.g., accelerometers), behavioral indicators can be tracked to measure sleep in multiple individuals in a group of animals simultaneously. Sleep proximity networks and sleep timing networks can then be used to investigate the collective dynamics of sleep in wild group-living animals.

11.
Neurosci Biobehav Rev ; 165: 105868, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39218048

RESUMEN

As a central molecule in complement system (CS), complement (C) 3 is upregulated in the patients and animal models of Alzheimer's disease (AD). C3 will metabolize to iC3b and C3a. iC3b is responsible for clearing ß-amyloid protein (Aß). In this scenario, C3 exerts neuroprotective effects against the disease via iC3b. However, C3a will inhibit microglia to clear the Aß, leading to the deposition of Aß and impair the functions of synapses. To their effects on AD, activation of C3a and C3a receptor (C3aR) will impair the mitochondria, leading to the release of reactive oxygen species (ROS), which activates the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasomes. The overloading of NLRP3 inflammasomes activate microglia, leading to the formation of inflammatory environment. The inflammatory environment will facilitate the deposition of Aß and abnormal synapse pruning, which results in the progression of AD. Therefore, the current review will decipher the mechanisms of C3a inducing the synapse loss via C3aR in mitochondria-dependent NLRP3 activating mechanisms, which facilitates the understanding the AD.


Asunto(s)
Enfermedad de Alzheimer , Complemento C3a , Mitocondrias , Proteína con Dominio Pirina 3 de la Familia NLR , Receptores de Complemento , Sinapsis , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Humanos , Sinapsis/metabolismo , Sinapsis/patología , Animales , Mitocondrias/metabolismo , Receptores de Complemento/metabolismo , Complemento C3a/metabolismo , Progresión de la Enfermedad , Complemento C3/metabolismo
12.
Clin Appl Thromb Hemost ; 30: 10760296241279293, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39246243

RESUMEN

This study investigates the prevalence and risk factors associated with venous thrombotic events in patients receiving (ECMO) support. Systematic review and meta-analysis of case-control and cohort studies. PubMed, Cochrane Library, Embase, CINAHL, Web of Science, Scopus, and ProQuest databases from inception through November 25, 2023.Case-control and cohort studies focusing on the prevalence and risk factors for venous thrombotic events in patients supported by ECMO. Identification of risk factors and calculation of incidence rates. Nineteen studies encompassing 10,767 participants were identified and included in the analysis. The pooled prevalence of venous thrombotic events among patients receiving ECMO support was 48% [95% confidence interval (CI) 0.37-0.60, I2 = 97.18%]. Factors associated with increased incidence rates included longer duration of ECMO support (odds ratio [OR] 1.08, 95% CI 1.07-1.09, I2 = 49%), abnormal anti-coagulation monitoring indicators (OR 1.02, 95% CI 1.00-1.04, I2 = 84%), and type of ECMO cannulation (OR 1.77, 95% CI 1.14-3.34, I2 = 64%). The pooled prevalence of venous thrombotic events in patients with ECMO support is high. Increased risk is associated with extended duration of ECMO support, abnormal anti-coagulation monitoring, and specific types of ECMO cannulation.


Asunto(s)
Oxigenación por Membrana Extracorpórea , Trombosis de la Vena , Oxigenación por Membrana Extracorpórea/efectos adversos , Oxigenación por Membrana Extracorpórea/métodos , Humanos , Trombosis de la Vena/etiología , Trombosis de la Vena/epidemiología , Factores de Riesgo , Prevalencia
13.
J Control Release ; 373: 867-878, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39097194

RESUMEN

Radiotherapy widely applied for local tumor therapy in clinic has been recently reinvigorated by the discovery that radiotherapy could activate systematic antitumor immune response. Nonetheless, the endogenous radio-immune effect is still incapable of radical tumor elimination due to the prevention of immune cell infiltration by the physical barrier in tumor microenvironment (TME). Herein, an engineered Salmonella secreting nattokinase (VNPNKase) is developed to synergistically modulate the physical and immune characteristics of TME to enhance radio-immunotherapy of colon tumors. The facultative anaerobic VNPNKase enriches at the tumor site after systemic administration, continuously secreting abundant NKase to degrade fibronectin, dredge the extracellular matrix (ECM), and inactivate cancer-associated fibroblasts (CAFs). The VNPNKase- dredged TME facilitates the infiltration of CD103+ dendritic cells (DCs) and thus the presentation of tumor-associated antigens (TAAs) after radiotherapy, recruiting sufficient CD8+ T lymphocytes to specifically eradicate localized tumors. Moreover, the pre-treatment of VNPNKase before radiotherapy amplifies the abscopal effect and achieves a long-term immune memory effect, preventing the metastasis and recurrence of tumors. Our research suggests that this strategy using engineered bacteria to breach tumor physical barrier for promoting immune cell infiltration possesses great promise as a translational strategy to enhance the effectiveness of radio-immunotherapy in treating solid tumors.


Asunto(s)
Inmunoterapia , Microambiente Tumoral , Animales , Microambiente Tumoral/inmunología , Inmunoterapia/métodos , Humanos , Salmonella/inmunología , Femenino , Línea Celular Tumoral , Ratones Endogámicos BALB C , Neoplasias del Colon/inmunología , Neoplasias del Colon/terapia , Neoplasias del Colon/patología , Linfocitos T CD8-positivos/inmunología , Células Dendríticas/inmunología , Ratones , Antígenos de Neoplasias/inmunología , Fibroblastos Asociados al Cáncer/inmunología , Ratones Endogámicos C57BL , Neoplasias/terapia , Neoplasias/inmunología
14.
Front Neurol ; 15: 1407860, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39091976

RESUMEN

Amidst rising Parkinson's disease (PD) incidence in an aging global population, the need for non-invasive and reliable diagnostic methods is increasingly critical. This review evaluates the strategic role of transcranial sonography (TCS) in the early detection and monitoring of PD. TCS's ability to detect substantia nigra hyperechogenicity offers profound insights into its correlation with essential neuropathological alterations-namely, iron accumulation, neuromelanin depletion, and glial proliferation-fundamental to PD's pathophysiology. Our analysis highlights TCS's advantages, including its non-invasiveness, cost-effectiveness, and ease of use, positioning it as an invaluable tool for early diagnosis and continual disease progression monitoring. Moreover, TCS assists in identifying potential risk and protective factors, facilitating tailored therapeutic strategies to enhance clinical outcomes. This review advocates expanding TCS utilization and further research to maximize its diagnostic and prognostic potential in PD management, contributing to a more nuanced understanding of the disease.

15.
Cell Death Differ ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39169174

RESUMEN

One of the main characteristics of diabetic kidney disease (DKD) is abnormal renal tubular fatty acid metabolism, especially defective fatty acid oxidation (FAO), accelerating tubular injury and tubulointerstitial fibrosis. Thiosulfate sulfurtransferase (TST), a mitochondrial enzyme essential for sulfur transfer, is reduced in metabolic diseases like diabetes and obesity. However, the potential role of TST in regulating fatty acid metabolic abnormalities in DKD remains unclear. Here, our data revealed decreased TST expression in the renal cortex of DKD patients. TST deficiency exacerbated tubular impairment in both diabetic and renal fibrosis mouse models, while sodium thiosulfate treatment or TST overexpression mitigated renal tubular injury with high-glucose exposure. TST downregulation mediated the decrease in S-sulfhydration of very long-chain specific acyl-CoA dehydrogenase, resulting in mitochondrial FAO dysfunction. This sequence of events exacerbates the progression of tubulointerstitial injury in DKD. Together, our findings demonstrate TST as a regulator of renal tubular injury in DKD.

16.
Br J Cancer ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164491

RESUMEN

BACKGROUND: Neoadjuvant immunotherapy is under intensive investigation for esophageal squamous cell carcinoma (ESCC). This study assesses the efficacy and immune response of neoadjuvant immunochemotherapy (nICT) in ESCC. METHODS: In this phase II trial (ChiCTR2100045722), locally advanced ESCC patients receiving nICT were enrolled. The primary endpoint was the pathological complete response (pCR) rate. Multiplexed immunofluorescence, RNA-seq and TCR-seq were conducted to explore the immune response underlying nICT. RESULTS: Totally 42 patients were enrolled, achieving a 27.0% pCR rate. The 1-year, 2-year DFS and OS rates were 89.2%, 64.4% and 97.3%, 89.2%, respectively. RNA-seq analysis highlighted T-cell activation as the most significantly enriched pathway. The tumour immune microenvironment (TIME) was characterised by high CD4, CD8, Foxp3, and PD-L1 levels, associating with better pathological regression (TRS0/1). TIME was categorised into immune-infiltrating, immune-tolerant, and immune-desert types. Notably, the immune-infiltrating type and tertiary lymphoid structures correlated with improved outcomes. In the context of nICT, TIM-3 negatively influenced treatment efficacy, while elevated TIGIT/PD-1 expression post-nICT correlated positively with CD8+ T cell levels. TCR-seq identified three TCR rearrangements, underscoring the specificity of T-cell responses. CONCLUSIONS: Neoadjuvant camrelizumab plus chemotherapy is effective for locally advanced, resectable ESCC, eliciting profound immune response that closely associated with clinical outcomes.

17.
Front Physiol ; 15: 1355696, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39108542

RESUMEN

Objective: The feasibility of the conduction system pacing (CSP) upgrade as an alternative modality to the traditional biventricular pacing (BiVP) upgrade in patients with pacemaker-induced cardiomyopathy (PICM) remains uncertain. This study sought to compare two modalities of CSP (His bundle pacing (HBP) and left bundle branch pacing (LBBP)) with BiVP and no upgrades in patients with pacing-induced cardiomyopathy. Methods: This retrospective analysis comprised consecutive patients who underwent either BiVP or CSP upgrade for PICM at the cardiac department from 2017 to 2021. Patients with a follow-up period exceeding 12 months were considered for the final analysis. Results: The final group of patients who underwent upgrades included 48 individuals: 11 with BiVP upgrades, 24 with HBP upgrades, and 13 with LBBP upgrades. Compared to the baseline data, there were significant improvements in cardiac performance at the last follow-up. After the upgrade, the QRS duration (127.81 ± 31.89 vs 177.08 ± 34.35 ms, p < 0.001), NYHA class (2.28 ± 0.70 vs 3.04 ± 0.54, p < 0.05), left ventricular end-diastolic diameter (LVEDD) (54.08 ± 4.80 vs 57.50 ± 4.85 mm, p < 0.05), and left ventricular ejection fraction (LVEF) (44.46% ± 6.39% vs 33.15% ± 5.25%, p < 0.001) were improved. There was a noticeable improvement in LVEF in the CSP group (32.15% ± 3.22% vs 44.95% ± 3.99% (p < 0.001)) and the BiVP group (33.90% ± 3.09% vs 40.83% ± 2.99% (p < 0.001)). The changes in QRS duration were more evident in CSP than in BiVP (56.65 ± 11.71 vs 34.67 ± 13.32, p < 0.001). Similarly, the changes in LVEF (12.8 ± 3.66 vs 6.93 ± 3.04, p < 0.001) and LVEDD (5.80 ± 1.71 vs 3.16 ± 1.35, p < 0.001) were greater in CSP than in BiVP. The changes in LVEDD (p = 0.549) and LVEF (p = 0.570) were similar in the LBBP and HBP groups. The threshold in LBBP was also lower than that in HBP (1.01 ± 0.43 vs 1.33 ± 0.32 V, p = 0.019). Conclusion: The improvement of clinical outcomes in CSP was more significant than in BiVP. CSP may be an alternative therapy to CRT for patients with PICM. LBBP would be a better choice than HBP due to its lower thresholds.

18.
Aging Dis ; 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39122455

RESUMEN

Alzheimer's disease (AD) is an intricate neurodegenerative disorder characterized by the accumulation of misfolded proteins, including beta-amyloid (Aß) and tau, leading to cognitive decline. Despite decades of research, the precise mechanisms underlying its onset and progression remain elusive. Cathepsins are a family of lysosomal enzymes that play vital roles in cellular processes, including protein degradation and regulation of immune responses. Emerging evidence suggests that cathepsins may be involved in AD pathogenesis. Cathepsins can influence the activation of microglia and astrocytes, the resident immune cells in the brain. However, cathepsin dysfunction may lead to the accumulation of misfolded proteins, notably Aß and tau. In addition, dysregulated cathepsin activity may induce an exaggerated immune response, promoting chronic inflammation and neuronal dysfunction in patients with AD. By unraveling the classification, functions, and roles of cathepsins in AD's pathogenesis, this review sheds light on their intricate involvement in this devastating disease. Targeting cathepsin activity could be a promising and novel approach for mitigating the pathological processes that contribute to AD, providing new avenues for its treatment and prevention.

19.
Se Pu ; 42(8): 740-748, 2024 Aug.
Artículo en Chino | MEDLINE | ID: mdl-39086242

RESUMEN

Perfluorinated and polyfluoroalkyl substances (PFASs) are compounds characterized by at least one perfluorinated carbon atom in an alkyl chain linked to side-chain groups. Owing to their unique chemical properties, these compounds are widely used in industrial production and daily life. However, owing to anthropogenic activities, sewage discharge, surface runoff, and atmospheric deposition, PFASs have gradually infiltrated the environment and aquatic resources. With their gradual accumulation in environmental waters, PFASs have been detected in fishes and several fish-feeding species, suggesting that they are bioconcentrated and even amplified in aquatic organisms. PFASs exhibit high intestinal absorption efficiencies, and they bioaccumulate at higher trophic levels in the food chain. They can be bioconcentrated in the human body via food (e. g., fish) and thus threaten human health. Therefore, establishing an efficient analytical technique for use in analyzing PFASs in typical fish samples and providing technical support for the safety regulation and risk assessment of fish products is necessary. In this study, by combining solvent extraction and magnetic dispersion-solid phase extraction (d-SPE), an improved QuEChERS method with ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was developed for the determination of 13 PFASs in fish samples. Fe3O4-TiO2 can be used as an ideal adsorbent in the removal of sample matrix interference and a separation medium for the rapid encapsulation of other solids to be isolated from the solution. Based on the matrix characteristics of the fish products and structural properties of the target PFASs, Fe3O4-TiO2 and N-propyl ethylenediamine (PSA) were employed as adsorbents in dispersive purification. The internal standard method was used in the quantitative analyses of the PFASs. To optimize the sample pretreatment conditions of analyzing PFASs, the selection of the extraction solvent and amounts of Fe3O4-TiO2 and PSA were optimized. Several PFASs contain acidic groups that are non-dissociated in acidic environments, thus favoring their entry into the organic phase. In addition, acidified acetonitrile can denature and precipitate the proteins within the sample matrix, facilitating their removal. Finally, 2% formic acid acetonitrile was used as the extraction solvent, and 20 mg Fe3O4-TiO2, 20 mg PSA and 120 mg anhydrous MgSO4 were used as purification adsorbents. Under the optimized conditions, the developed method exhibited an excellent linearity (R≥0.9973) in the range of 0.01-50 µg/L, and the limits of detection (LODs) and quantification (LOQs) ranged from 0.001-0.023 and 0.003-0.078 µg/L, respectively. The recoveries of the 13 PFASs at low, medium, and high spiked levels (0.5, 10, and 100 µg/kg) were 78.1%-118%, with the intra- and inter-day precisions of 0.2%-11.1% and 0.8%-8.7%, respectively. This method was applied in analyzing real samples, and PFASs including perfluorooctanesulfonic acid, perfluorooctanoic acid, perfluoroundecanoic acid, perfluorododecanoic acid, and perfluorotridecanoic acid, were detected in all 11 samples evaluated. This method is simple, sensitive, and suitable for use in analyzing PFASs in fish samples.


Asunto(s)
Peces , Fluorocarburos , Contaminación de Alimentos , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Fluorocarburos/análisis , Animales , Cromatografía Líquida de Alta Presión , Contaminación de Alimentos/análisis , Caprilatos/análisis , Ácidos Alcanesulfónicos/análisis
20.
Sleep Med Rev ; 78: 101989, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39153335

RESUMEN

Habitual daytime napping is a common behavioral and lifestyle practice in particular countries and is often considered part of a normal daily routine. However, recent evidence suggests that the health effects of habitual daytime napping are controversial. We systematically searched PubMed, Web of Science, Embase, and Cochrane Library databases from inception to March 9, 2024, to synthesize cohort studies of napping and health outcome risk. A total of 44 cohort studies with 1,864,274 subjects aged 20-86 years (mean age 56.4 years) were included. Overall, habitual napping increased the risk of several adverse health outcomes, including all-cause mortality, cardiovascular disease, metabolic disease, and cancer, and decreased the risk of cognitive impairment and sarcopenia. Individuals with a napping duration of 30 min or longer exhibited a higher risk of all-cause mortality, cardiovascular disease, and metabolic disease, whereas those with napping durations less than 30 min had no significant risks. No significant differences in napping and health risks were observed for napping frequency, percentage of nappers, sample size, sex, age, body mass index, follow-up years, or comorbidity status. These findings indicate that individuals with a long napping duration should consider shortening their daily nap duration to 30 min or less.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA