Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Opt Express ; 31(9): 14997-14999, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37157351

RESUMEN

This feature issue of Optics Express highlights contributions from authors who presented their latest research at the OPTICA Optical Sensors and Sensing Congress, held in Vancouver, British Columbia, Canada from 11-15 July 2022. The feature issue comprises 9 contributed papers, which expand upon their respective conference proceedings. The published papers introduced here cover a range of timely research topics in optics and photonics for chip-based sensing, open-path and remote sensing and fiber devices.

2.
Appl Spectrosc ; 76(2): 163-172, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34643139

RESUMEN

This paper examines infrared spectroscopic effects for the standoff detection of an explosive material, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), inkjet printed on an aluminum surface. Results of a spectroscopic study are described, using multiple optical setups. These setups were selected to explore how variations in the angles of incidence and collection from the surface of the material result in corresponding variations in the spectral signatures. The goal of these studies is to provide an understanding of these spectral changes since it affects standoff detection of hazardous materials on a reflective substrate. We demonstrate that variations in spectral effects are dependent on the relative surface concentration of the deposited RDX. We also show that it is reasonable to use spectroscopic data collected in a standard laboratory infrared spectrometer outfitted with a variable angle reflectometer set at 0° as reference spectra for data collected in a standoff configuration. These results are important to provide a systematic approach to understanding infrared (IR) spectra collection using standoff systems in the field, and to allow for comparison between such data, and data collected in the laboratory. Although the precise results are constrained to a specific material system (thin layers on a reflective substrate), the approach and general discussion provided are applicable to a broad range of IR standoff sensing techniques and applications.

3.
Opt Express ; 28(13): 19571-19573, 2020 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-32672231

RESUMEN

This joint feature issue of Optics Express and Applied Optics highlights contributions from authors who presented their latest research at the OSA Optical Sensors and Sensing Congress, held in San Jose, California, USA from 25-27 June 2019. The joint feature issue comprises 6 contributed papers, which expand upon their respective conference proceedings. The published papers introduced here cover a range of timely research topics in optics and photonics for active open-path sensing, radiometry, and adaptive optics and fiber devices.

4.
Appl Opt ; 59(7): OSS1-OSS2, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32225749

RESUMEN

This joint feature issue of Optics Express and Applied Optics highlights contributions from authors who presented their latest research at the OSA Optical Sensors and Sensing Congress, held in San Jose, California, USA, from 25-27 June 2019. The joint feature issue comprises six contributed papers, which expand upon their respective conference proceedings. The published papers introduced here cover a range of timely research topics in optics and photonics for active open-path sensing, radiometry, and adaptive optics and fiber devices.

5.
Anal Chem ; 91(21): 14058-14065, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31552733

RESUMEN

Color vision results from the interaction of retinal photopigments with reflected or transmitted visible light. The International Commission on Illumination (CIE) developed the CIE color-matching chart, which separates colors on the basis of the interaction of their spectral profiles with three retinal photopigments in the human eye. We report the development of an infrared chromaticity (CIE-IR) chart, which mimics the CIE chart, in order to discriminate between different chemicals on the basis of the interactions of their IR signatures with three different IR optical filters, instead of the retinal photopigments in the human eye. Our results demonstrate that the CIE-IR chart enables separation of different classes of chemicals, as the visible CIE chart does with color, except for those in the IR spectral region. Such results clearly show that the biomimetic sensing method based on human color vision is in fact a true analogue to color vision and that the proposed CIE-IR chart can be used as a classification method unique to this biomimetic sensing modality.


Asunto(s)
Visión de Colores , Color , Humanos , Rayos Infrarrojos
6.
Appl Spectrosc ; 73(2): 214-220, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30347995

RESUMEN

The Department of Defense (DOD) and first responder communities are evaluating and developing optical systems for the detection and identification of explosives and components used for assembling homemade explosives (HMEs). Emerging detection technologies must be evaluated with authentic hazard material concentrations to ensure their accurate and reliable use in the field. In this work, infrared (IR) reflectance spectra over the spectral rage of 1000-1700 cm-1 were collected for different concentrations of inkjet-printed RDX (cyclotrimethylenetrinitramine) samples deposited onto aluminum substrates. A plot of the integrated area of both the symmetric and asymmetric NO2 vibrational bands for RDX on aluminum exhibited good linearity over the concentration range 20-500 µg/cm2. Detection limits for RDX on an aluminum surface were calculated to be 10.7 µg/cm2 for the symmetric NO2 vibrational band and 1.4 µg/cm2 for the asymmetric NO2 vibrational band. Evaluation of the NO2 vibrational band areas at different locations of the RDX array demonstrated that the samples exhibited good homogeneity across the surface. The concentration of an unknown sample of RDX on aluminum was determined using the fitted equations; results showed good agreement between the calculated and actual RDX surface concentration. The lot-to-lot variation of RDX on the aluminum surface was compared using the long wavelength infrared (LWIR) spectral band areas for two different lots of standards printed at the same RDX surface concentration. Results showed excellent lot-to-lot agreement indicating good reproducibility of the standards for RDX.

7.
Opt Express ; 25(19): 22738-22749, 2017 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-29041580

RESUMEN

Control and manipulation of sound is of critical importance to many different scientific and engineering fields, requiring the design of rigid physical structures with precise geometries and material properties for the desired acoustics. In this work, we demonstrate the ability to manipulate the direction and magnitude of sound waves traveling in air using laser light, without the need for physical interfaces associated with different materials. Efficient reflection of sound waves off of transient, optically generated, abrupt air density barriers is demonstrated, with acoustic reflections greater than 25% of the incident acoustic wave amplitude. Implementation of multiple barriers, can result in complete suppress the transmission of incident acoustic signals as great as 70 dB. Additionally, shaping the laser beam acoustic waveguides can be generated with dramatically reduced transmission losses.

8.
Appl Opt ; 56(3): B74-B84, 2017 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-28157868

RESUMEN

Traditionally, chemical sensing platforms have been hampered by the opposing concerns of increasing sensor capability while maintaining a minimal package size. Current sensors, although reasonably sized, are geared to more classical chemical threats, and the ability to expand their capabilities to a broader range of emerging threats is uncertain. Recently, photoacoustic spectroscopy, employed in a sensor format, has shown enormous potential to address these ever-changing threats. Photoacoustic spectroscopy is one of the more flexible infrared spectroscopy variants, and that flexibility allows for the construction of sensors that are designed for specific tasks. The Army Research Laboratory has, for the past 14 years, engaged in research into the development of photoacoustic sensing platforms with the goal of sensor miniaturization and the detection of a variety of chemical targets both proximally and at range. This paper reviews this work.

9.
Appl Opt ; 56(3): B159-B168, 2017 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-28157878

RESUMEN

Trace chemical detection is a particularly challenging problem of significant Army interest. Optical diagnostic techniques offer rapid, accurate, sensitive, and highly selective detection of hazardous materials in a variety of systems. Multiplex coherent anti-stokes Raman scattering (MCARS) spectroscopy generates a complete Raman spectrum from the material of interest using a combination of a supercontinuum pulse, which drives multiple molecular vibrations simultaneously, and a narrowband probe pulse. In this study, we demonstrated the ability of MCARS to detect trace amounts of both explosive materials and chemical warfare agent simulants with limits of detection below 0.2 ng and 0.1 nl, respectively. Integration times were on the order of 10 ms, using a compact USB spectrometer. Characteristics of supercontinuum generation were studied and compared to results in the literature. Finally, an algorithm that utilizes a combination of the maximum entropy method and advanced Fourier filtering to analytically remove the non-resonant background from the MCARS spectra without any a priori knowledge of the vibrational spectrum of the material of interest.

10.
Appl Opt ; 56(3): B198-B213, 2017 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-28157898

RESUMEN

Regenerated surface-enhanced Raman scattering (SERS) substrates allow users the ability to not only reuse sensing surfaces, but also tailor them to the sensing application needs (wavelength of the available laser, plasmon band matching). In this review, we discuss the development of SERS substrates for response to emerging threats and some of our collaborative efforts to improve on the use of commercially available substrate surfaces. Thus, we are able to extend the use of these substrates to broader Army needs (like emerging threat response).

11.
J Opt ; 19(8)2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29375751

RESUMEN

Sensors are devices or systems able to detect, measure and convert magnitudes from any domain to an electrical one. Using light as a probe for optical sensing is one of the most efficient approaches for this purpose. The history of optical sensing using some methods based on absorbance, emissive and florescence properties date back to the 16th century. The field of optical sensors evolved during the following centuries, but it did not achieve maturity until the demonstration of the first laser in 1960. The unique properties of laser light become particularly important in the case of laser-based sensors, whose operation is entirely based upon the direct detection of laser light itself, without relying on any additional mediating device. However, compared with freely propagating light beams, artificially engineered optical fields are in increasing demand for probing samples with very small sizes and/or weak light-matter interaction. Optical fiber sensors constitute a subarea of optical sensors in which fiber technologies are employed. Different types of specialty and photonic crystal fibers provide improved performance and novel sensing concepts. Actually, structurization with wavelength or subwavelength feature size appears as the most efficient way to enhance sensor sensitivity and its detection limit. This leads to the area of micro- and nano-engineered optical sensors. It is expected that the combination of better fabrication techniques and new physical effects may open new and fascinating opportunities in this area. This roadmap on optical sensors addresses different technologies and application areas of the field. Fourteen contributions authored by experts from both industry and academia provide insights into the current state-of-the-art and the challenges faced by researchers currently. Two sections of this paper provide an overview of laser-based and frequency comb-based sensors. Three sections address the area of optical fiber sensors, encompassing both conventional, specialty and photonic crystal fibers. Several other sections are dedicated to micro- and nano-engineered sensors, including whispering-gallery mode and plasmonic sensors. The uses of optical sensors in chemical, biological and biomedical areas are described in other sections. Different approaches required to satisfy applications at visible, infrared and THz spectral regions are also discussed. Advances in science and technology required to meet challenges faced in each of these areas are addressed, together with suggestions on how the field could evolve in the near future.

12.
Appl Spectrosc ; 71(5): 833-838, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27340220

RESUMEN

Detection and identification of unknown and possibly hazardous materials is a vital area of research to which infrared (IR) spectroscopy is ideally suited. Infrared absorption spectra can be measured with many sensing paradigms of which photoacoustic spectroscopy (PAS) is a sensitive and flexible variant. The flexibility of PAS allows for the construction of narrowly tailored spectroscopic sensors that are designed for specific tasks. We discuss the evaluation of an interferometric PAS sensor by the measurement of common explosive hazards from a standoff distance of 1 m. Reproduction of IR absorption spectra for 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), pentaerythritol tetranitrate (PETN), and 2,4,6-trinitrotoluene (TNT) demonstrate the capabilities of the interferometric sensor for standoff explosives detection.

13.
J Mol Recognit ; 27(12): 739-45, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25319622

RESUMEN

Bacterial peptide display libraries enable the rapid and efficient selection of peptides that have high affinity and selectivity toward their targets. Using a 15-mer random library on the outer surface of Escherichia coli (E.coli), high-affinity peptides were selected against a staphylococcal enterotoxin B (SEB) protein after four rounds of biopanning. On-cell screening analysis of affinity and specificity were measured by flow cytometry and directly compared to the synthetic peptide, off-cell, using peptide-ELISA. DNA sequencing of the positive clones after four rounds of microfluidic magnetic sorting (MMS) revealed a common consensus sequence of (S/T)CH(Y/F)W for the SEB-binding peptides R338, R418, and R445. The consensus sequence in these bacterial display peptides has similar amino acid characteristics with SEB peptide sequences isolated from phage display. The Kd measured by peptide-ELISA off-cell was 2.4 nM for R418 and 3.0 nM for R445. The bacterial peptide display methodology using the semiautomated MMS resulted in the discovery of selective peptides with affinity for a food safety and defense threat. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.


Asunto(s)
Enterotoxinas/metabolismo , Fenómenos Magnéticos , Microfluídica/métodos , Biblioteca de Péptidos , Péptidos/análisis , Secuencia de Aminoácidos , Ensayo de Inmunoadsorción Enzimática , Fluorescencia , Datos de Secuencia Molecular , Péptidos/química , Unión Proteica
14.
Small ; 10(21): 4287-92, 2014 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-25045064

RESUMEN

The synthesis of plasmonic nanorattles with accessible electromagnetic hotspots that facilitate highly sensitive detection of chemical analytes using surface enhanced Raman scattering (SERS) is demonstrated. Raman spectra obtained from individual nanorattles demonstrate the significantly higher SERS activity compared to solid plasmonic nanostructures.

15.
J Phys Chem A ; 118(45): 10456-63, 2014 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-24991979

RESUMEN

Laser-induced filamentation was used to study the dynamics of excited molecular nitrogen decay processes. It is well-known that upper excited nitrogen triplet states can be repopulated at time delays far longer than their fluorescence lifetimes. Examination of the time-resolved emission from several different species indicates that there are two major mechanisms acting to repopulate the N2(C(3)Πu) excited state. The results implicate dissociative electron recombination with the nitrogen cation dimer, N4(+), and energy pooling between two N2(A(3)Σu(+)) triplet states as the main pathways to repopulate the emissive upper triplet state. The densities of N2(A(3)Σu(+)) and free electrons produced during filamentation were measured under atmospheric pressures in nitrogen and estimated to be [N2(A(3)Σu(+))]0 = 3 × 10(15) cm(­3) and [e(­)]0 = 3 × 10(13) cm(­3). The methods outlined in this report could find significant utility in measuring the concentration profiles of these important reactive intermediates within laser-induced filaments produced under different conditions.

16.
Appl Spectrosc ; 68(3): 287-96, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24666945

RESUMEN

The United States Army and the first responder community are increasingly focusing efforts on energetic materials detection and identification. Main hazards encountered in theater include homemade explosives and improvised explosive devices, in part fabricated from simple components like ammonium nitrate (AN). In order to accurately detect and identify these unknowns (energetic or benign), fielded detection systems must be accurately trained using well-understood universal testing substrates. These training substrates must contain target species at known concentrations and recognized polymorphic phases. Ammonium nitrate is an explosive precursor material that demonstrates several different polymorphic phases dependent upon how the material is deposited onto testing substrates. In this paper, known concentrations of AN were uniformly deposited onto commercially available surface-enhanced Raman scattering (SERS) substrates using a drop-on-demand inkjet printing system. The phase changes observed after the deposition of AN under several solvent conditions are investigated. Characteristics of the collected SERS spectra of AN are discussed, and it is demonstrated that an understanding of the exact nature of the AN samples deposited will result in an increased ability to accurately and reliably "train" hazard detection systems.

17.
Sensors (Basel) ; 13(5): 5814-25, 2013 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-23653050

RESUMEN

Hazard detection systems must be evaluated with appropriate test material concentrations under controlled conditions in order to accurately identify and quantify unknown residues commonly utilized in theater. The existing assortment of hazard reference sample preparation methods/techniques presents a range of variability and reproducibility concerns, making it increasingly difficult to accurately assess optically- based detection technologies. To overcome these challenges, we examined the optimization, characterization, and calibration of microdroplets from a drop-on-demand microdispenser that has a proven capability for the preparation of energetic reference materials. Research presented herein focuses on the development of a simplistic instrument calibration technique and sample preparation protocol for explosive materials testing based on drop-on-demand technology. Droplet mass and reproducibility were measured using ultraviolet-visible (UV-Vis) absorption spectroscopy. The results presented here demonstrate the operational factors that influence droplet dispensing for specific materials (e.g., energetic and interferents). Understanding these parameters permits the determination of droplet and sample uniformity and reproducibility (typical R2 values of 0.991, relative standard deviation or RSD ≤ 5%), and thus the demonstrated maturation of a successful and robust methodology for energetic sample preparation.

18.
Appl Spectrosc ; 67(4): 396-403, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23601539

RESUMEN

We present the results of a three-year collaboration between the U.S. Army Edgewood Chemical Biological Center and the U.S. Army Research Laboratory-Aldelphi Laboratory Center on the evaluation of selected nanometallic surfaces developed for the Defense Advanced Research Projects Agency Surface-Enhanced Raman Scattering (SERS) Science and Technology Fundamentals program. The primary role of the two Army labs was to develop the analytical and spectroscopic figures of merit to unambiguously compare the sensitivity and reproducibility of various SERS substrates submitted by the program participants. We present the design and implementation of an evaluation protocol for SERS active surfaces enabling an enhancement value calculation from which different substrates can be directly compared. This method was established to: (1) collect physical and spectral characterization data from the small number of substrates (performer supplied) typically encountered, and (2) account for the complex fabrication technique and varying nature of the substrate platforms encountered within this program.


Asunto(s)
Nanoestructuras/química , Plata/química , Espectrometría Raman/métodos , Curva ROC , Reproducibilidad de los Resultados
19.
Appl Spectrosc ; 66(6): 628-35, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22732532

RESUMEN

The United States Army and the first responder community are evaluating optical detection systems for the trace detection of hazardous energetic materials. Fielded detection systems must be evaluated with the appropriate material concentrations to accurately identify the residue in theater. Trace levels of energetic materials have been observed in mutable polymorphic phases and, therefore, the systems being evaluated must be able to detect and accurately identify variant sample phases observed in spectral data. In this work, we report on the novel application of drop-on-demand technology for the fabrication of standardized trace 1,3,5-trinitro-1,3,5-triazine (RDX) samples. The drop-on-demand sample fabrication technique is compared both visually and spectrally to the more commonly used drop-and-dry technique. As the drop-on-demand technique allows for the fabrication of trace level hazard materials, concerted efforts focused on characterization of the polymorphic phase changes observed with low concentrations of RDX commonly used in drop-on-demand processing. This information is important when evaluating optical detection technologies using samples prepared with a drop-on-demand inkjet system, as the technology may be "trained" to detect the common bulk α phase of the explosive based on its spectral features but fall short in positively detecting a trace quantity of RDX (ß-phase). We report the polymorphic shifts observed between α- and ß-phases of this energetic material and discuss the conditions leading to the favoring of one phase over the other.


Asunto(s)
Sustancias Explosivas/química , Espectrometría Raman/métodos , Triazinas/química , Cristalización , Modelos Moleculares , Impresión , Estándares de Referencia , Espectrometría Raman/normas
20.
Biotechniques ; 52(2): 95-102, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22313407

RESUMEN

Peptide reagents can serve as alternatives or replacements to antibodies in sensing or diagnostic applications. The passive adsorption of peptides onto polystyrene surfaces can limit the target binding capability, especially for short, positively charged, or hydrophobic sequences. In this report, we show that fusing a peptide with a previously characterized 12-amino acid polystyrene binding sequence (PS-tag) improves overall peptide solubility and enzyme-linked immunosorbent assay (ELISA) results using the peptide as a capture agent. Specific improvements for protective antigen (PA; Bacillus anthracis) protein binding peptides selected from bacterial surface display were compared with native or biotinylated peptides. The PS-tag was added to either peptide terminus, using a (Gly)(4) spacer, and comparable binding affinities were obtained. Fusion with the PS-tag did not have any negative impact on peptide secondary structure as measured by circular dichroism. The addition of the PS-tag provides a convenient method to utilize peptide reagents from peptide display libraries as capture agents in an ELISA format without the need for a biotin tag or concerns about passive adsorption of critical residues for target capture.


Asunto(s)
Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Poliestirenos/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Secuencia de Aminoácidos , Ensayo de Inmunoadsorción Enzimática/métodos , Datos de Secuencia Molecular , Unión Proteica/genética , Análisis de Secuencia de Proteína/métodos , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA