Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Ann Neurol ; 93(2): 371-383, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36134540

RESUMEN

OBJECTIVE: Neuronal excitation/inhibition (E/I) imbalance is a potential cause of neuronal network malfunctioning in Alzheimer's disease (AD), contributing to cognitive dysfunction. Here, we used a novel approach combining transcranial magnetic stimulation (TMS) and electroencephalography (EEG) to probe cortical excitability in different brain areas known to be directly involved in AD pathology. METHODS: We performed TMS-EEG recordings targeting the left dorsolateral prefrontal cortex (l-DLPFC), the left posterior parietal cortex (l-PPC), and the precuneus (PC) in a large sample of patients with mild-to-moderate AD (n = 65) that were compared with a group of age-matched healthy controls (n = 21). RESULTS: We found that patients with AD are characterized by a regional cortical hyperexcitability in the PC and, to some extent, in the frontal lobe, as measured by TMS-evoked potentials. Notably, cortical excitability assessed over the l-PPC was comparable between the 2 groups. Furthermore, we found that the individual level of PC excitability was associated with the level of cognitive impairment, as measured with Mini-Mental State Examination, and with corticospinal fluid levels of Aß42 . INTERPRETATION: Our data provide novel evidence that precuneus cortical hyperexcitability is a key feature of synaptic dysfunction in patients with AD. The current results point to the combined approach of TMS and EEG as a novel promising technique to measure hyperexcitability in patients with AD. This index could represent a useful biomarker to stage disease severity and evaluate response to novel therapies. ANN NEUROL 2023;93:371-383.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico , Lóbulo Parietal , Electroencefalografía/métodos , Potenciales Evocados/fisiología , Estimulación Magnética Transcraneal/métodos
2.
Ann Neurol ; 92(3): 464-475, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35713198

RESUMEN

OBJECTIVE: In Alzheimer disease (AD) animal models, synaptic dysfunction has recently been linked to a disorder of high-frequency neuronal activity. In patients, a clear relation between AD and oscillatory activity remains elusive. Here, we attempt to shed light on this relation by using a novel approach combining transcranial magnetic stimulation and electroencephalography (TMS-EEG) to probe oscillatory activity in specific hubs of the frontoparietal network in a sample of 60 mild-to-moderate AD patients. METHODS: Sixty mild-to-moderate AD patients and 21 age-matched healthy volunteers (HVs) underwent 3 TMS-EEG sessions to assess cortical oscillations over the left dorsolateral prefrontal cortex, the precuneus, and the left posterior parietal cortex. To investigate the relations between oscillatory activity, cortical plasticity, and cognitive decline, AD patients underwent a TMS-based neurophysiological characterization and a cognitive evaluation at baseline. The latter was repeated after 24 weeks to monitor clinical evolution. RESULTS: AD patients showed a significant reduction of frontal gamma activity as compared to age-matched HVs. In addition, AD patients with a more prominent decrease of frontal gamma activity showed a stronger impairment of long-term potentiation-like plasticity and a more pronounced cognitive decline at subsequent follow-up evaluation at 24 weeks. INTERPRETATION: Our data provide novel evidence that frontal lobe gamma activity is dampened in AD patients. The current results point to the TMS-EEG approach as a promising technique to measure individual frontal gamma activity in patients with AD. This index could represent a useful biomarker to predict disease progression and to evaluate response to novel pharmacological therapies. ANN NEUROL 2022;92:464-475.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Animales , Electroencefalografía/métodos , Lóbulo Frontal , Humanos , Estimulación Magnética Transcraneal/métodos
3.
Front Aging Neurosci ; 9: 420, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29326582

RESUMEN

Recent studies have demonstrated that transcranial direct current stimulation (tDCS) is potentially useful to improve working memory. In the present study, young and elderly subjects performed a working memory task (n-back task) during an electroencephalogram recording before and after receiving anodal, cathodal, and sham tDCS over the left dorsolateral prefrontal cortex (DLPFC). We investigated modulations of behavioral performance and electrophysiological correlates of working memory processes (frontal and parietal P300 event-related potentials). A strong tendency to modulated working memory performance was observed after the application of tDCS. In detail, young, but not elderly, subjects benefited from additional practice in the absence of real tDCS, as indicated by their more accurate responses after sham tDCS. The cathodal tDCS had no effect in any group of participants. Importantly, anodal tDCS improved accuracy in elderly. Moreover, increased accuracy after anodal tDCS was correlated with a larger frontal P300 amplitude. These findings suggest that, in elderly subjects, improved working memory after anodal tDCS applied over the left DLPFC may be related to the promotion of frontal compensatory mechanisms, which are related to attentional processes.

4.
Clin EEG Neurosci ; 43(3): 184-91, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22715493

RESUMEN

Although numerous studies have been performed using transcranial electrical stimulation (tES), our understanding of tES-induced effects on neural activity remains limited, especially regarding the effects on neural networks. The use of an approach, such as electroencephalography (EEG) in combination with tES, could allow for a more detailed understanding of the neural mechanisms involved in these observed changes. Co-registration of tES and EEG might provide high temporal resolution information regarding tES-induced modifications/modulations to cortical activity that corresponds to different stages of processing. This article aims at presenting new knowledge about this recent and innovative approach that can possibly provide information about the dynamics of human brain functions beyond what is possible by the use of either method alone.


Asunto(s)
Encéfalo/fisiología , Electroencefalografía/métodos , Electroencefalografía/tendencias , Potenciales Evocados/fisiología , Red Nerviosa/fisiología , Estimulación Magnética Transcraneal/métodos , Estimulación Magnética Transcraneal/tendencias , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA