Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 14: 1209384, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37528980

RESUMEN

Rice (Oryza sativa L.) is a staple food in many countries around the world, particularly in China. The production of rice is seriously affected by the bacterial leaf streak and rice blast, which can reduce rice yield or even cause it to fail to be harvested. In this study, susceptible material 58B was edited by CRISPR/Cas9, targeting a target of the Pi21 gene and a target of the effector-binding element (EBE) of the OsSULTR3;6 gene, and the mutants 58b were obtained by Agrobacterium-mediated method. The editing efficiency of the two targets in the T0 generation was higher than 90.09%, the homozygous mutants were successfully selected in the T0 generation, and the homozygous mutation rate of each target was higher than 26.67%. The expression of the edited pi21 and EBE of Ossultr3;6 was significantly reduced, and the expression of defense responsive genes was significantly upregulated after infected with rice blast. The lesion areas of rice blast and bacterial leaf streak were significantly reduced in 58b, and the resistance of both was effectively improved. Furthermore, the gene editing events did not affect the agronomic traits of rice. In this study, the resistance of 58b to rice blast and bacterial leaf streak was improved simultaneously. This study provides a reference for using Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 (CRISPR/Cas9) to accelerate the improvement of rice varieties and the development of new materials for rice breeding.

2.
Genes (Basel) ; 11(7)2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32630695

RESUMEN

Rice blast (Magnaporthe oryzae) is a devastating disease affecting rice production globally. The development of cultivars with host resistance has been proved to be the best strategy for disease management. Several rice-resistance genes (R) have been recognized which induce resistance to blast in rice but R gene-mediated mechanisms resulting in defense response still need to be elucidated. Here, mutant lines generated through CRISPR/Cas9 based targeted mutagenesis to investigate the role of Pi21 against blast resistance and 17 mutant plants were obtained in T0 generation with the mutation rate of 66% including 26% bi-allelic, 22% homozygous, 12% heterozygous, and 3% chimeric and 17 T-DNA-free lines in T1 generation. The homozygous mutant lines revealed enhanced resistance to blast without affecting the major agronomic traits. Furthermore, comparative proteome profiling was adopted to study the succeeding proteomic regulations, using iTRAQ-based proteomic analysis. We identified 372 DEPs, among them 149 up and 223 were down-regulated, respectively. GO analysis revealed that the proteins related to response to stimulus, photosynthesis, carbohydrate metabolic process, and small molecule metabolic process were up-regulated. The most of DEPs were involved in metabolic, ribosomal, secondary metabolites biosynthesis, and carbon metabolism pathways. 40S ribosomal protein S15 (P31674), 50S ribosomal protein L4, L5, L6 (Q10NM5, Q9ZST0, Q10L93), 30S ribosomal protein S5, S9 (Q6YU81, Q850W6, Q9XJ28), and succinate dehydrogenase (Q9S827) were hub-proteins. The expression level of genes related to defense mechanism, involved in signaling pathways of jasmonic acid (JA), salicylic acid (SA), and ethylene metabolisms were up-regulated in mutant line after the inoculation of the physiological races of M. oryzae as compared to WT. Our results revealed the fundamental value of genome editing and expand knowledge about fungal infection avoidance in rice.


Asunto(s)
Resistencia a la Enfermedad , Mutación , Oryza/genética , Proteoma/genética , Ascomicetos/patogenicidad , Sistemas CRISPR-Cas , Oryza/inmunología , Oryza/microbiología , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Dominios Proteicos Ricos en Prolina , Proteoma/metabolismo
3.
Genome Announc ; 4(2)2016 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-27081126

RESUMEN

Ralstonia solanacearumstrain Rs-T02 was originally isolated from a bacterial wilt of tomato plant in Nanning City of Guangxi Province, China. It represents the most prevalent phylotype in Guangxi. Here, we present the draft genome sequence of this strain, which comprises 5,225 genes and 5,976,011 nucleotides with an average G+C content of 66.79%. There are 968 different genes between this isolate and the previously reported genome sequence ofRalstonia solanacearumGMl l000 (race l, biovar 3, phylotype I), and the genome sequence information of this isolate may be useful for comparative genomic studies to determine the genetic diversity in this species.

4.
Curr Genet ; 57(6): 409-20, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21901484

RESUMEN

Duo1, a major component of the Dam1 complex which has been found in two species of yeast (the budding yeast Saccharomyces cerevisae and the fission yeast Schizosaccharomyces pombe), is involved in mitosis-related chromosome segregation, while its relevance to pathogenicity in filamentous fungi remains unclear. This report elucidated this very fact in the case of the rice blast fungus Magnaporthe oryzae. A gene designated MoDUO1 that encodes a Duo1-like homolog (MoDuo1) was discovered in the M. oryzae genome. Two types of MoDUO1 mutants were obtained using genetic approaches of Agrobacterium-mediated gene disruption and homologous recombination. Both disruption and deletion of MoDUO1 can exert profound effects on the formation pattern of conidiophores and conidial morphology, such as abnormal nucleic numbers in conidia and delayed extension of infectious hyphae. Intriguingly, plant infection assays demonstrated that inactivation of MoDUO1 significantly attenuates the virulence in its natural host rice leaves, and functional complementation can restore it. Subcellular localization assays showed that MoDuo1 is mainly distributed in the cytosol of fungal cells. Proteomics-based investigation revealed that the expression of four mitosis-related proteins is shut down in the MoDUO1 mutant, suggesting that MoDuo1 may have a function in mitosis. In light of the fact that Duo1 orthologs are widespread in plant and human fungal pathogens, our finding may represent a common mechanism underlying fungal virulence. To the best of our knowledge, this is the first example of linking a Duo1-like homolog to the pathogenesis of a pathogenic fungus, which might provide clues to additional studies on the role of Dam1 complex in M. oryzae and its interaction with rice.


Asunto(s)
Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Magnaporthe/genética , Magnaporthe/patogenicidad , Oryza/microbiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Eliminación de Gen , Datos de Secuencia Molecular , Mutación , Fenotipo , Proteómica , Alineación de Secuencia , Factores de Transcripción/química , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA