Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 201
Filtrar
1.
J Mater Chem B ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39248714

RESUMEN

Fiber organic electrochemical transistors (OECTs) hold significant promise for in vivo bio-signal amplification due to their minimally invasive and seamless integration with biological tissues. However, their use in monitoring rapid physiological changes, such as electrophysiological signals, has been constrained by slow response time, arising from their extensive channel dimensions. Here, we introduce a novel fiber OECT designed with a micro-scale vertical channel (F-vOECT) that substantially reduces the response time by an order of magnitude to 12 ms and achieves a maximum transconductance of 16 mS at zero gate bias, marking a substantial improvement over previous fiber OECTs. This compact and flexible fiber device demonstrates robust performance under cyclic switching, dynamic deformation and exhibits excellent biocompatibility. When subcutaneously implanted in rats, the F-vOECT enables stable, continuous electrocardiogram monitoring for 7 days, successfully identifying episodes of atrioventricular block. These capabilities illustrate its potential for clinical electrophysiological diagnostics. The design strategy of F-vOECT opens new avenues for developing fast-responsive fiber bioelectronic devices.

2.
Adv Mater ; : e2409910, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39258364

RESUMEN

Scalable fiber lithium-ion batteries (FLIBs) have garnered significant attention due to huge potential applications in wearable technology. However, their widespread applications have been limited by inadequate cycle and calendar life, primarily due to the high permeability of the encapsulation layer to water vapor in ambient air. To address this challenge, an ultra-high barrier composite tube is developed by blending polytrifluorochloroethylene (PCTFE) with organically modified montmorillonite (OMMT) for the continuous packaging of FLIBs. Due to the high crystallinity (≈40.21%) and small free volume (103.443 Å3), the PCTFE tube exhibited a low water vapor transmission rate (WVTR) of 0.123 mg day-1 pkg-1. Furthermore, through the melt extrusion, OMMT with its plate-like morphology are fully exfoliated and dispersed within the PCTFE matrix. This created more complex pathways for water, increasing the diffusion path length and thereby reducing WVTR to 0.006 mg day-1 pkg-1. This innovation enabled an ultra-long calendar life of 200 days and cycle life of 870 cycles for FLIBs, with over 80% capacity retention in ambient air. Additionally, 2%OMMT-PCTFE-FLIBs exhibited excellent flexibility, retaining an impressive 85.31% capacity after 10 000 bending cycles. This research presents a simple yet effective approach to enhance the lifetime and practicality of FLIBs through building a high-performance polymer-based encapsulation layer.

3.
Small ; : e2405000, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39152934

RESUMEN

Fiber electronics booms as a new important field but is currently limited by the challenge of finding both highly flexible and conductive fiber electrodes. Here, all-metal fibers based on nanowires are discovered. Silver nanowires are continuously assembled into robust fibers by salt-induced aggregation and then firmly stabilized by plasmonic welding. The nanowire network structures provide them both high flexibility with moduli at the level of MPa and conductivities up to 106 S m-1. They also show excellent electrochemical properties such as low impedance and high electrochemically active surface area. Their stable chronic single-neuron recording is further demonstrated with good biocompatibility in vivo. These new fiber materials may provide more opportunities for the future development of fiber electronics.

4.
Adv Mater ; : e2407874, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39054698

RESUMEN

Implantable neural devices that record neurons in various states, including static states, light activities such as walking, and vigorous activities such as running, offer opportunities for understanding brain functions and dysfunctions. However, recording neurons under vigorous activities remains a long-standing challenge because it leads to intense brain deformation. Thus, three key requirements are needed simultaneously for neural devices, that is, low modulus, low specific interfacial impedance, and high electrical conductivity, to realize stable device/brain interfaces and high-quality transmission of neural signals. However, they always contradict each other in current material strategies. Here, a soft fiber neural device capable of stably tracking individual neurons in the deep brain of medium-sized animals under vigorous activity is reported. Inspired by the axon architecture, this fiber neural device is constructed with a conductive gel fiber possessing a network-in-liquid structure using conjugated polymers and liquid matrices and then insulated with soft fluorine rubber. This strategy reconciles the contradictions and simultaneously confers the fiber neural device with low modulus (300 kPa), low specific impedance (579 kΩ µm2), and high electrical conductivity (32 700 S m-1) - ≈1-3 times higher than hydrogels. Stable single-unit spike tracking in running cats, which promises new opportunities for neuroscience is demonstrated.

5.
Small ; : e2312221, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39007285

RESUMEN

Ultrasound imaging is extensively used in biomedical science and clinical practice. Imaging resolution and tunability of imaging plane are key performance indicators, but both remain challenging to be improved due to the longer wavelength compared with light and the lack of zoom lens for ultrasound. Here, the ultrasound zoom imaging based on a stretchable planar metalens that simultaneously achieves the subwavelength imaging resolution and dynamic control of the imaging plane is reported. The proposed zoom imaging ultrasonography enables precise bone fracture diagnosis and comprehensive osteoporosis assessment. Millimeter-scale microarchitectures of the cortical bones at different depths can be selectively imaged with a 0.6-wavelength resolution. The morphological features of bone fractures, including the shape, size and position, are accurately detected. Based on the extracted ultrasound information of cancellous bones with healthy matrix, osteopenia and osteoporosis, a multi-index osteoporosis evaluation method is developed. Furthermore, it provides additional biological information in aspects of bone elasticity and attenuation to access the comprehensive osteoporosis assessment. The soft metalens also features flexibility and biocompatibility for preferable applications on wearable devices. This work provides a strategy for the development of high-resolution ultrasound biomedical zoom imaging and comprehensive bone quality diagnosis system.

6.
Adv Healthc Mater ; 13(22): e2400675, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38843486

RESUMEN

Implantable sensors, especially ion sensors, facilitate the progress of scientific research and personalized healthcare. However, the permanent retention of implants induces health risks after sensors fulfill their mission of chronic sensing. Biodegradation is highly anticipated; while; biodegradable chemical sensors are rare due to concerns about the leakage of harmful active molecules after degradation, such as ionophores. Here, a novel biodegradable fiber calcium ion sensor is introduced, wherein ionophores are covalently bonded with bioinert nanoparticles to replace the classical ion-selective membrane. The fiber sensor demonstrates comparable sensing performance to classical ion sensors and good flexibility. It can monitor the fluctuations of Ca2+ in a 4-day lifespan in vivo and biodegrade in 4 weeks. Benefiting from the stable bonding between ionophores and nanoparticles, the biodegradable sensor exhibits a good biocompatibility after degradation. Moreover, this approach of bonding active molecules on bioinert nanoparticles can serve as an effective methodology for minimizing health concerns about biodegradable chemical sensors.


Asunto(s)
Calcio , Nanopartículas , Nanopartículas/química , Calcio/química , Animales , Ratones , Materiales Biocompatibles/química , Implantes Absorbibles , Iones/química , Técnicas Biosensibles/métodos
7.
Natl Sci Rev ; 11(6): nwae158, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38881574

RESUMEN

Fiber electronics with flexible and weavable features can be easily integrated into textiles for wearable applications. However, due to small sizes and curved surfaces of fiber materials, it remains challenging to load robust active layers, thus hindering production of high-sensitivity fiber strain sensors. Herein, functional sensing materials are firmly anchored on the fiber surface in-situ through a hydrolytic condensation process. The anchoring sensing layer with robust interfacial adhesion is ultra-mechanically sensitive, which significantly improves the sensitivity of strain sensors due to the easy generation of microcracks during stretching. The resulting stretchable fiber sensors simultaneously possess an ultra-low strain detection limit of 0.05%, a high stretchability of 100%, and a high gauge factor of 433.6, giving 254-folds enhancement in sensitivity. Additionally, these fiber sensors are soft and lightweight, enabling them to be attached onto skin or woven into clothes for recording physiological signals, e.g. pulse wave velocity has been effectively obtained by them. As a demonstration, a fiber sensor-based wearable smart healthcare system is designed to monitor and transmit health status for timely intervention. This work presents an effective strategy for developing high-performance fiber strain sensors as well as other stretchable electronic devices.

8.
J Mater Chem B ; 12(23): 5594-5599, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38818741

RESUMEN

Flexible fiber electrodes offer new opportunities for bioelectronics and are reliable in vivo applications, high flexibility, high electrical conductivity, and satisfactory biocompatibility are typically required. Herein, we present an all-metal flexible and biocompatible fiber electrode based on a metal nanowire hybrid strategy, i.e., silver nanowires were assembled on a freestanding framework, and further to render them inert, they were plated with a gold nanoshell. Our fiber electrodes exhibited a low modulus of ∼75 MPa and electrical conductivity up to ∼4.8 × 106 S m-1. They can resist chemical erosion with negligible leakage of biotoxic silver ions in the physiological environment, thus ensuring satisfactory biocompatibility. Finally, we demonstrated the hybrid fiber as a neural electrode that stimulated the sciatic nerve of a mouse, proving its potential for applications in bioelectronics.


Asunto(s)
Electrodos , Oro , Nanocables , Plata , Plata/química , Nanocables/química , Oro/química , Animales , Ratones , Conductividad Eléctrica , Materiales Biocompatibles/química , Nervio Ciático , Tamaño de la Partícula
9.
Natl Sci Rev ; 11(6): nwae143, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38741715

RESUMEN

The near-room temperature resistance transition in the Lu-H-N compound is repeatedly reproduced, which is clarified to originate from a metal-to-semiconductor/insulator transition rather than superconductivity.

10.
Small ; 20(34): e2400570, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38600895

RESUMEN

Lithium (Li) metal batteries are deemed as promising next-generation power solutions but are hindered by the uncontrolled dendrite growth and infinite volume change of Li anodes. The extensively studied 3D scaffolds as solutions generally lead to undesired "top-growth" of Li due to their high electrical conductivity and the lack of ion-transporting pathways. Here, by reducing electrical conductivity and increasing the ionic conductivity of the scaffold, the deposition spot of Li to the bottom of the scaffold can be regulated, thus resulting in a safe bottom-up plating mode of the Li and dendrite-free Li deposition. The resulting symmetrical cells with these scaffolds, despite with a limited pre-plated Li capacity of 5 mAh cm-2, exhibit ultra-stable Li plating/stripping for over 1 year (11 000 h) at a high current density of 3 mA cm-2 and a high areal capacity of 3 mAh cm-2. Moreover, the full cells with these scaffolds further demonstrate high cycling stability under challenging conditions, including high cathode loading of 21.6 mg cm-2, low negative-to-positive ratio of 1.6, and limited electrolyte-to-capacity ratio of 4.2 g Ah-1.

11.
Nature ; 629(8010): 86-91, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38658763

RESUMEN

Replacement of liquid electrolytes with polymer gel electrolytes is recognized as a general and effective way of solving safety problems and achieving high flexibility in wearable batteries1-6. However, the poor interface between polymer gel electrolyte and electrode, caused by insufficient wetting, produces much poorer electrochemical properties, especially during the deformation of the battery7-9. Here we report a strategy for designing channel structures in electrodes to incorporate polymer gel electrolytes and to form intimate and stable interfaces for high-performance wearable batteries. As a demonstration, multiple electrode fibres were rotated together to form aligned channels, while the surface of each electrode fibre was designed with networked channels. The monomer solution was effectively infiltrated first along the aligned channels and then into the networked channels. The monomers were then polymerized to produce a gel electrolyte and form intimate and stable interfaces with the electrodes. The resulting fibre lithium-ion battery (FLB) showed high electrochemical performances (for example, an energy density of about 128 Wh kg-1). This strategy also enabled the production of FLBs with a high rate of 3,600 m h-1 per winding unit. The continuous FLBs were woven into a 50 cm × 30 cm textile to provide an output capacity of 2,975 mAh. The FLB textiles worked safely under extreme conditions, such as temperatures of -40 °C and 80 °C and a vacuum of -0.08 MPa. The FLBs show promise for applications in firefighting and space exploration.

12.
Angew Chem Int Ed Engl ; 63(23): e202403415, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38573437

RESUMEN

Metal-backboned polymers (MBPs), with a unique backbone consisting of bonded metal atoms, are promising for optic, electric, magnetic, and thermoelectric fields. However, the application of MBP remains relatively understudied. Here, we develop a shear-induced orientation method to construct a flexible nickel-backboned polymer/carbon nanotube (NBP/CNT) thermoelectric composite fiber. It demonstrated a power factor of 719.48 µW ⋅m-1 K-2, which is ca. 3.5 times as high as the bare CNT fiber. Remarkably, with the regulation of carrier mobility and carrier concentration of NBP, the composite fiber further showed simultaneous increases in electrical conductivity and Seebeck coefficient in comparison to the bare CNT fiber. The NBP/CNT fiber can be integrated into fabrics to harvest thermal energy of human body to generate an output voltage of 3.09 mV at a temperature difference of 8 K. This research opens a new avenue for the development of MBPs in power supply.

13.
Nat Protoc ; 19(5): 1557-1589, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38429518

RESUMEN

Mono-dimensional fiber-based electronics can effectively address the growing demand for improved wearable electronic devices because of their exceptional flexibility and stretchability. For practical applications, functional fiber electronic devices need to be integrated into more powerful and versatile systems to execute complex tasks that cannot be completed by single-fiber devices. Existing techniques, such as printing and sintering, reduce the flexibility and cause low connection strength of fiber-based electronic devices because of the high curvature of the fiber. Here, we outline a twisting fabrication process for fiber electrodes, which can be woven into functional threads and integrated within textiles. The design of the twisted thread structure for fiber devices ensures stable interfacing and good flexibility, while the textile structure features easily accessible, interlaced points for efficient circuit connections. Electronic textiles can be customized to act as displays, health monitors and power sources. We detail three main fabrication sections, including the fabrication of the fiber electrodes, their twisting into electronic threads and their assembly into functional textile-based devices. The procedures require ~10 d and are easily reproducible by researchers with expertise in fabricating energy and electronic devices.


Asunto(s)
Electrodos , Diseño de Equipo , Textiles , Dispositivos Electrónicos Vestibles , Electrónica/instrumentación
14.
Natl Sci Rev ; 11(3): nwae006, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38344116

RESUMEN

The rise in wearable electronics has witnessed the advancement of self-healable wires, which are capable of recovering mechanical and electrical properties upon structural damage. However, their highly fluctuating electrical resistances in the range of hundreds to thousands of ohms under dynamic conditions such as bending, pressing, stretching and tremoring may seriously degrade the precision and continuity of the resulting electronic devices, thus severely hindering their wearable applications. Here, we report a new family of self-healable wires with high strengths and stable electrical conductivities under dynamic conditions, inspired by mechanical-electrical coupling of the myelinated axon in nature. Our self-healable wire based on mechanical-electrical coupling between the structural and conductive components has significantly improved the electrical stability under dynamic scenarios, enabling precise monitoring of human health status and daily activities, even in the case of limb tremors from simulated Parkinson's disease. Our mechanical-electrical coupling strategy opens a new avenue for the development of dynamically stable electrodes and devices toward real-world wearable applications.

15.
Nature ; 626(7998): 313-318, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38326591

RESUMEN

Calcium-oxygen (Ca-O2) batteries can theoretically afford high capacity by the reduction of O2 to calcium oxide compounds (CaOx) at low cost1-5. Yet, a rechargeable Ca-O2 battery that operates at room temperature has not been achieved because the CaOx/O2 chemistry typically involves inert discharge products and few electrolytes can accommodate both a highly reductive Ca metal anode and O2. Here we report a Ca-O2 battery that is rechargeable for 700 cycles at room temperature. Our battery relies on a highly reversible two-electron redox to form chemically reactive calcium peroxide (CaO2) as the discharge product. Using a durable ionic liquid-based electrolyte, this two-electron reaction is enabled by the facilitated Ca plating-stripping in the Ca metal anode at room temperature and improved CaO2/O2 redox in the air cathode. We show the proposed Ca-O2 battery is stable in air and can be made into flexible fibres that are weaved into textile batteries for next-generation wearable systems.

16.
Adv Mater ; 36(16): e2312590, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38227454

RESUMEN

Fiber solar cells as promising wearable power supplies have attracted increasing attentions recently, while further breakthrough on their power conversion efficiency (PCE) and realization of multicolored appearances remain urgent needs particularly in real-world applications. Here, a fiber-dye-sensitized solar cell (FDSSC) integrated with a light diffusion layer composed of alumina/polyurethane film on the outmost encapsulating tube and a light conversion layer made from phosphors/TiO2/poly(vinylidene fluoride-co-hexafluoropropylene) film on the inner counter electrode is designed. The incident light is diffused to more surfaces of fiber electrodes, then converted on counter electrode and reflected to neighboring photoanode, so the FDSSC efficiently takes advantage of the fiber shape for remarkably enhanced light harvesting, producing a record PCE of 13.11%. These efficient FDSSCs also realize color-tunable appearances, improving their designability and compatibility with textiles. They are further integrated with fiber batteries as power systems, providing a power solution for wearables and emerging smart textiles.

17.
Adv Mater ; 36(11): e2304876, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37543841

RESUMEN

Photovoltaic devices represent an efficient electricity generation mode. Integrating them into textiles offers exciting opportunities for smart electronic textiles-with the ultimate goal of supplying power for wearable technology-which is poised to change how electronic devices are designed. Many human activities occur indoors, so realizing indoor photovoltaic fibers (IPVFs) that can be woven into textiles to power wearables is critical, although currently unavailable. Here, a dye-sensitized IPVF is constructed by incorporating titanium dioxide nanoparticles into aligned nanotubes to produce close contact and stable interfaces among active layers on a curved fiber substrate, thus presenting efficient charge transport and low charge recombination in the photoanode. With the combination of highly conductive core-sheath Ti/carbon nanotube fiber as a counter electrode, the IPVF shows a certified power conversion efficiency of 25.53% under 1500 lux illuminance. Its performance variation is below 5% after bending, twisting, or pressing for 1000 cycles. These IPVFs are further integrated with fiber batteries as self-charging power textiles, which are demonstrated to effectively supply electricity for wearables, solving the power supply problem in this important direction.

18.
Adv Mater ; 36(13): e2309862, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38133487

RESUMEN

The extracellular potassium ion concentration in the brain exerts a significant influence on cellular excitability and intercellular communication. Perturbations in the extracellular potassium ion level are closely correlated with various chronic neuropsychiatric disorders including depression. However, a critical gap persists in performing real-time and long-term monitoring of extracellular potassium ions, which is necessary for comprehensive profiling of chronic neuropsychiatric diseases. Here, a fiber potassium ion sensor (FKS) that consists of a soft conductive fiber with a rough surface and a hydrophobic-treated transduction layer interfaced with a potassium ion-selective membrane is found to solve this problem. The FKS demonstrates stable interfaces between its distinct functional layers in an aqueous environment, conferring an exceptional stability of 6 months in vivo, in stark contrast to previous reports with working durations from hours to days. Upon implantation into the mouse brain, the FKS enables effective monitoring of extracellular potassium ion dynamics under diverse physiological states including anesthesia, forced swimming, and tail suspension. Using this FKS, tracking of extracellular potassium ion fluctuations that align with behaviors associated with the progression of depression over months is achieved, demonstrating its usability in studying chronic neuropsychiatric disorders from a new biochemical perspective.


Asunto(s)
Encéfalo , Potasio , Animales , Ratones , Iones
19.
Angew Chem Int Ed Engl ; 62(47): e202312001, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37806963

RESUMEN

Rechargeable sodium/chlorine (Na/Cl2 ) batteries are emerging candidates for sustainable energy storage owing to their superior energy densities and the high abundance of Na and Cl elements. However, their practical applications have been plagued by the poor rate performance (e.g., a maximum discharge current density of 150 mA g-1 ), as the widely used carbon nanosphere cathodes show both sluggish electron-ion transport and reaction kinetics. Here, by mimicking the sufficient mass and energy transport in a sponge, we report a bicontinuous-structured carbon cubosome with heteroatomic doping, which allows efficient Na+ and electron transport and promotes Cl2 adsorption and conversion, thus unlocking ultrahigh-rate Na/Cl2 batteries, e.g., a maximum discharge current density of 16,000 mA g-1 that is more than two orders of magnitude higher than previous reports. The optimized solid-liquid-gas (carbon-electrolyte-Cl2 ) triple interfaces further contribute to a maximum reversible capacity and cycle life of 2,000 mAh g-1 and 250 cycles, respectively. This study establishes a universal approach for improving the sluggish kinetics of conversion-type battery reactions, and provides a new paradigm to resolve the long-standing dilemma between high energy and power densities in energy storage devices.

20.
Adv Healthc Mater ; 12(31): e2301610, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37717208

RESUMEN

Repairing high-load connective tissues, such as ligaments, by surgically implanting artificial grafts after injury is challenging because they lack biointegration with host bones for stable interfaces. Herein, a high-performance helical composite fiber (HCF) ligament by wrapping aligned carbon nanotube (CNT) sheets around polyester fibers is proposed. Anterior cruciate ligament (ACL) reconstruction surgery shows that HCF grafts could induce effective bone regeneration, thus allowing the narrowing of bone tunnel defects. Such repair of the bone tunnel is in strong contrast to the tunnel enlargement of more than 50% for commercial artificial ligaments made from bare polyester fibers. Rats reconstructed with this HCF ligament show normal jumping, walking, and running without limping. This work allows bone regeneration in vivo through a one-step surgery without seeding cells or transforming growth factors, thereby opening an avenue for high-performance artificial tissues.


Asunto(s)
Reconstrucción del Ligamento Cruzado Anterior , Nanotubos de Carbono , Animales , Ratas , Ligamento Cruzado Anterior/trasplante , Poliésteres
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA