Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Phys Rev Mater ; 5(2)2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38487078

RESUMEN

The coupling between the organic CH3NH3+ cations and inorganic perovskite PbBr3- framework in a large single crystal of (CH3NH3)PbBr3 weighting 13 g was studied using neutron diffraction and inelastic neutron scattering. Two lattice incommensurate (ICM) phases were found, one at higher temperatures, marked ICMHT, which appeared between 147 and 135 K. The second one, marked ICMLT, developed below 143 K and remained at 75 K. The transition from the ICMLT to ICMHT phase upon warming gave rise to extremely large lattice shrinking, followed by extremely large lattice expansion of the tetragonal basal plane of the PbBr3 lattice. There was a progressive decrease in the width of the Bragg peaks from the PbBr3 lattice upon warming, which can be described using a critical exponent for each type of Bragg peak to show complete ordering of the atoms into a (CH3NH3)PbBr3 lattice at 194 K. (CH3NH3)PbBr3 exhibits six definitive acoustic-like phonon branches at 75 K. The six branches renormalizes into two at 200 K, with the frequencies of both the transverse and longitudinal modes greatly enhanced. The asymmetric structure of the CH3NH3 ions helps to understand the observed behaviors.

2.
Nanomaterials (Basel) ; 10(7)2020 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-32635511

RESUMEN

The Fe-doped NiO nanoparticles that were synthesized using a co-precipitation method are characterized by enhanced room-temperature ferromagnetic property evident from magnetic measurements. Neutron powder diffraction experiments suggested an increment of the magnetic moment of 3d ions in the nanoparticles as a function of Fe-concentration. The temperature, time, and field-dependent magnetization measurements show that the effect of Fe-doping in NiO has enhanced the intraparticle interactions due to formed defect clusters. The intraparticle interactions are proposed to bring additional magnetic anisotropy energy barriers that affect the overall magnetic moment relaxation process and emerging as room temperature magnetic memory. The outcome of this study is attractive for the future development of the room temperature ferromagnetic oxide system to facilitate the integration of spintronic devices and understanding of their fundamental physics.

3.
ACS Omega ; 5(8): 3849-3856, 2020 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-32149211

RESUMEN

Magnetic properties of fully oxygenated bare CuO nanoparticles have been investigated using magnetization, X-ray diffraction, neutron diffraction, and Raman scattering measurements. The Langevin field profile is clearly revealed in the isothermal magnetization of 8.8 nm CuO nanoparticle assembly even at 300 K, revealing a 172 times enhancement of the ferromagnetic responses over that of bulk CuO. Surface magnetization of 8.8 nm CuO reaches 18% of the core magnetization. The Cu spins in 8.8 nm CuO order below 400 K, which is 1.7 times higher than the 231 K observed in bulk CuO. A relatively simple magnetic structure that may be indexed using a modulation vector of (0.2, 0, 0.2) was found for the 8.8 nm CuO, but no magnetic incommensurability was observed in bulk CuO. The Cu spins in 8.8 nm CuO form spin density waves with length scales of 5 chemical unit cells long along the crystallographic a- and c-axis directions. Considerable amounts of electronic charge shift from around the Cu lattice sites toward the interconnecting regions of two neighboring Cu-Cu ions, resulting in a stronger ferromagnetic direct exchange interaction for the neighboring Cu spins in 8.8 nm CuO.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA