Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Med Image Anal ; 82: 102574, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36126403

RESUMEN

Knee cartilage and bone segmentation is critical for physicians to analyze and diagnose articular damage and knee osteoarthritis (OA). Deep learning (DL) methods for medical image segmentation have largely outperformed traditional methods, but they often need large amounts of annotated data for model training, which is very costly and time-consuming for medical experts, especially on 3D images. In this paper, we report a new knee cartilage and bone segmentation framework, KCB-Net, for 3D MR images based on sparse annotation. KCB-Net selects a small subset of slices from 3D images for annotation, and seeks to bridge the performance gap between sparse annotation and full annotation. Specifically, it first identifies a subset of the most effective and representative slices with an unsupervised scheme; it then trains an ensemble model using the annotated slices; next, it self-trains the model using 3D images containing pseudo-labels generated by the ensemble method and improved by a bi-directional hierarchical earth mover's distance (bi-HEMD) algorithm; finally, it fine-tunes the segmentation results using the primal-dual Internal Point Method (IPM). Experiments on four 3D MR knee joint datasets (the SKI10 dataset, OAI ZIB dataset, Iowa dataset, and iMorphics dataset) show that our new framework outperforms state-of-the-art methods on full annotation, and yields high quality results for small annotation ratios even as low as 10%.


Asunto(s)
Rodilla , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Articulación de la Rodilla/diagnóstico por imagen , Cartílago , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos
2.
Med Image Anal ; 79: 102460, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35598519

RESUMEN

Accurate 3D segmentation of calf muscle compartments in volumetric MR images is essential to diagnose as well as assess progression of muscular diseases. Recently, good segmentation performance was achieved using state-of-the-art deep learning approaches, which, however, require large amounts of annotated data for training. Considering that obtaining sufficiently large medical image annotation datasets is often difficult, time-consuming, and requires expert knowledge, minimizing the necessary sizes of expert-annotated training datasets is of great importance. This paper reports CMC-Net, a new deep learning framework for calf muscle compartment segmentation in 3D MR images that selects an effective small subset of 2D slices from the 3D images to be labelled, while also utilizing unannotated slices to facilitate proper generalization of the subsequent training steps. Our model consists of three parts: (1) an unsupervised method to select the most representative 2D slices on which expert annotation is performed; (2) ensemble model training employing these annotated as well as additional unannotated 2D slices; (3) a model-tuning method using pseudo-labels generated by the ensemble model that results in a trained deep network capable of accurate 3D segmentations. Experiments on segmentation of calf muscle compartments in 3D MR images show that our new approach achieves good performance with very small annotation ratios, and when utilizing full annotation, it outperforms state-of-the-art full annotation segmentation methods. Additional experiments on a 3D MR thigh dataset further verify the ability of our method in segmenting leg muscle groups with sparse annotation.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Pierna , Humanos , Imagenología Tridimensional/métodos , Pierna/diagnóstico por imagen , Músculos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA