RESUMEN
Introductions of transboundary animal diseases (TADs) into free-ranging wildlife can be difficult to control and devastating for domestic livestock trade. Combating a new TAD introduction in wildlife with an emergency response requires quickly limiting spread of the disease by intensely removing wild animals within a contiguous area. In the case of African swine fever virus (ASFv) in wild pigs (Sus scrofa), which has been spreading in many regions of the world, there is little information on the time- and cost-efficiency of methods for intensively and consistently culling wild pigs and recovering carcasses in an emergency response scenario. We compared the efficiencies of aerial operations, trapping, experimental toxic baiting, and ground shooting in northcentral Texas, USA during two months in 2023. Culling and recovering carcasses of wild pigs averaged a rate of 0.15 wild pigs/person hour and cost an average of $233.04/wild pig ($USD 2023) across all four methods. Aerial operations required the greatest initial investment but subsequently was the most time- and cost-efficient, costing an average of $7266 to reduce the population by a standard measure of 10â¯%, including recovering carcasses. Aerial operations required a ground crew of â¼7 people/helicopter to recover carcasses. Costs for reducing the population of wild pigs using trapping were similar, although took 13.5 times longer to accomplish. In cases where carcass recovery and disposal are needed (e.g., response to ASFv), a benefit of trapping was immediate carcass recovery. Toxic baiting was less efficient because both culling and carcass recovery required substantial time. We culled very few wild pigs with ground shooting in this landscape. Our results provide insight on the efficiencies of each removal method. Strategically combining removal methods may increase overall efficiency. Overall, our findings inform the preparation of resources, personnel needs, and deployment readiness for TAD responses involving wild pigs.
RESUMEN
Social and spatial structures of host populations play important roles in pathogen transmission. For environmentally transmitted pathogens, the host space use interacts with both the host social structure and the pathogen's environmental persistence (which determines the time-lag across which two hosts can transmit). Together, these factors shape the epidemiological dynamics of environmentally transmitted pathogens. While the importance of both social and spatial structures and environmental pathogen persistence has long been recognized in epidemiology, they are often considered separately. A better understanding of how these factors interact to determine disease dynamics is required for developing robust surveillance and management strategies. Here, we use a simple agent-based model where we vary host mobility (spatial), host gregariousness (social) and pathogen decay (environmental persistence), each from low to high levels to uncover how they affect epidemiological dynamics. By comparing epidemic peak, time to epidemic peak and final epidemic size, we show that longer infectious periods, higher group mobility, larger group size and longer pathogen persistence lead to larger, faster growing outbreaks, and explore how these processes interact to determine epidemiological outcomes such as the epidemic peak and the final epidemic size. We identify general principles that can be used for planning surveillance and control for wildlife host-pathogen systems with environmental transmission across a range of spatial behaviour, social structure and pathogen decay rates. This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.
Asunto(s)
Animales Salvajes , Animales , Conducta Social , Modelos Biológicos , Interacciones Huésped-PatógenoRESUMEN
Wild pigs (Sus scrofa) are one of the most destructive invasive species in the US, known for causing extensive damage to agricultural commodities, natural resources, and property, and for transmitting diseases to livestock. Following the establishment of the National Feral Swine Damage Management Program (NFSDMP) in 2014, the expansion of wild pig populations has been successfully slowed. This paper combines two modeling approaches across eight separate models to characterize the expansion of wild pig populations in the absence of intervention by the NFSDMP and forecasts the value of a subset of resources safeguarded from the threat of wild pigs. The results indicate that if wild pigs had continued spreading at pre-program levels, they would have spread extensively across the US, with significant geographic variation across modeling scenarios. Further, by averting the threat of wild pigs, a substantial amount of crops, land, property, and livestock was safeguarded by the NFSDMP. Cumulatively, between 2014 and 2021, wild pig populations were prevented from spreading to an average of 724 counties and an average of USD 40.2 billion in field crops, pasture, grasses, and hay was safeguarded. The results demonstrate that intervention by the NFSDMP has delivered significant ecological and economic benefits that were not previously known.
RESUMEN
Understanding the epidemiology and transmission dynamics of transboundary animal diseases (TADs) among wild pigs (Sus scrofa) will aid in preventing the introduction or containment of TADs among wild populations. Given the challenges associated with studying TADs in free-ranging populations, a surrogate pathogen system may predict how pathogens may circulate and be maintained within wild free-ranging swine populations, how they may spill over into domestic populations, and how management actions may impact transmission. We assessed the suitability of Torque teno sus virus 1 (TTSuV1) to serve as a surrogate pathogen for molecular epidemiological studies in wild pigs by investigating the prevalence, persistence, correlation with host health status and genetic variability at two study areas: Archbold's Buck Island Ranch in Florida and Savannah River Site in South Carolina. We then conducted a molecular epidemiological case study within Archbold's Buck Island Ranch site to determine how analysis of this pathogen could inform transmission dynamics of a directly transmitted virus. Prevalence was high in both study areas (40%, n = 190), and phylogenetic analyses revealed high levels of genetic variability within and between study areas. Our case study showed that pairwise host relatedness and geographic distance were highly correlated to pairwise viral genetic similarity. Molecular epidemiological analyses revealed a distinct pattern of direct transmission from pig to pig occurring within and between family groups. Our results suggest that TTSuV1 is highly suitable for molecular epidemiological analyses and will be useful for future studies of transmission dynamics in wild free-ranging pigs.
Asunto(s)
Infecciones por Virus ADN , Enfermedades de los Porcinos , Torque teno virus , Animales , Torque teno virus/genética , Torque teno virus/aislamiento & purificación , Torque teno virus/clasificación , Porcinos , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/transmisión , Enfermedades de los Porcinos/epidemiología , Infecciones por Virus ADN/transmisión , Infecciones por Virus ADN/veterinaria , Infecciones por Virus ADN/virología , Infecciones por Virus ADN/epidemiología , Filogenia , South Carolina , Florida , Prevalencia , Sus scrofa/virología , Variación Genética , Animales Salvajes/virología , Epidemiología MolecularRESUMEN
Emerging infectious diseases with zoonotic potential often have complex socioecological dynamics and limited ecological data, requiring integration of epidemiological modeling with surveillance. Although our understanding of SARS-CoV-2 has advanced considerably since its detection in late 2019, the factors influencing its introduction and transmission in wildlife hosts, particularly white-tailed deer (Odocoileus virginianus), remain poorly understood. We use a Susceptible-Infected-Recovered-Susceptible epidemiological model to investigate the spillover risk and transmission dynamics of SARS-CoV-2 in wild and captive white-tailed deer populations across various simulated scenarios. We found that captive scenarios pose a higher risk of SARS-CoV-2 introduction from humans into deer herds and subsequent transmission among deer, compared to wild herds. However, even in wild herds, the transmission risk is often substantial enough to sustain infections. Furthermore, we demonstrate that the strength of introduction from humans influences outbreak characteristics only to a certain extent. Transmission among deer was frequently sufficient for widespread outbreaks in deer populations, regardless of the initial level of introduction. We also explore the potential for fence line interactions between captive and wild deer to elevate outbreak metrics in wild herds that have the lowest risk of introduction and sustained transmission. Our results indicate that SARS-CoV-2 could be introduced and maintained in deer herds across a range of circumstances based on testing a range of introduction and transmission risks in various captive and wild scenarios. Our approach and findings will aid One Health strategies that mitigate persistent SARS-CoV-2 outbreaks in white-tailed deer populations and potential spillback to humans.
Asunto(s)
COVID-19 , Ciervos , SARS-CoV-2 , Animales , Ciervos/virología , COVID-19/transmisión , COVID-19/epidemiología , COVID-19/veterinaria , COVID-19/virología , Humanos , Modelos Epidemiológicos , Animales Salvajes/virología , Biología Computacional , Brotes de Enfermedades/veterinaria , Brotes de Enfermedades/estadística & datos numéricos , Zoonosis/transmisión , Zoonosis/epidemiología , Zoonosis/virologíaRESUMEN
One Health recognizes the health of humans, agriculture, wildlife, and the environment are interrelated. The concept has been embraced by international health and environmental authorities such as WHO, WOAH, FAO, and UNEP, but One Health approaches have been more practiced by researchers than national or international authorities. To identify priorities for operationalizing One Health beyond research contexts, we conducted 41 semi-structured interviews with professionals across One Health sectors (public health, environment, agriculture, wildlife) and institutional contexts, who focus on national-scale and international applications. We identify important challenges, solutions, and priorities for delivering the One Health agenda through government action. Participants said One Health has made progress with motivating stakeholders to attempt One Health approaches, but achieving implementation needs more guidance (action plans for how to leverage or change current government infrastructure to accommodate cross-sector policy and strategic mission planning) and facilitation (behavioral change, dedicated personnel, new training model).
RESUMEN
African swine fever (ASF) causes significant morbidity and mortality in both domestic and wild suids (Sus scrofa), and disease outbreaks convey profound economic costs to impacted industries due to death loss, the cost of culling exposed/infected animals as the primary disease control measure, and trade restrictions. The co-occurrence of domestic and wild suids significantly complicates ASF management given the potential for wild populations to serve as persistent sources for spillover. We describe the unique threat of African swine fever virus (ASFV) introduction to the United States from epidemiological and ecological perspectives with a specific focus on disease management at the wild-domestic swine interface. The introduction of ASF into domestic herds would require a response focused on containment, culling, and contact tracing. However, detection of ASF among invasive wild pigs would require a far more complex and intensive response given the challenges of detection, containment, and ultimately elimination among wild populations. We describe the state of the science available to inform preparations for an ASF response among invasive wild pigs, describe knowledge gaps and the associated studies needed to fill those gaps, and call for an integrated approach for preparedness that incorporates the best available science and acknowledges sociological attributes and the policy context needed for an integrated disease response.
RESUMEN
Many pathogens of humans and livestock also infect wildlife that can act as a reservoir and challenge disease control or elimination. Efficient and effective prioritization of research and management actions requires an understanding of the potential for new tools to improve elimination probability with feasible deployment strategies that can be implemented at scale. Wildlife vaccination is gaining interest as a tool for managing several wildlife diseases. To evaluate the effect of vaccinating white-tailed deer (Odocoileus virginianus), in combination with harvest, in reducing and eliminating bovine tuberculosis from deer populations in Michigan, we developed a mechanistic age-structured disease transmission model for bovine tuberculosis with integrated disease management. We evaluated the impact of pulse vaccination across a range of vaccine properties. Pulse vaccination was effective for reducing disease prevalence rapidly with even low (30%) to moderate (60%) vaccine coverage of the susceptible and exposed deer population and was further improved when combined with increased harvest. The impact of increased harvest depended on the relative strength of transmission modes, i.e., direct vs indirect transmission. Vaccine coverage and efficacy were the most important vaccine properties for reducing and eliminating disease from the local population. By fitting the model to the core endemic area of bovine tuberculosis in Michigan, USA, we identified feasible integrated management strategies involving vaccination and increased harvest that reduced disease prevalence in free-ranging deer. Few scenarios led to disease elimination due to the chronic nature of bovine tuberculosis. A long-term commitment to regular vaccination campaigns, and further research on increasing vaccines efficacy and uptake rate in free-ranging deer are important for disease management.
Asunto(s)
Ciervos , Mycobacterium bovis , Tuberculosis Bovina , Vacunas , Animales , Humanos , Bovinos , Tuberculosis Bovina/epidemiología , Tuberculosis Bovina/prevención & control , Animales Salvajes , Vacunación/veterinariaRESUMEN
Raccoon rabies virus (RRV) has been managed using multiple vaccination strategies, including oral rabies vaccination and trap-vaccinate-release (TVR). Identifying a rabies vaccination strategy for an area is a nontrivial task. Vaccination strategies differ in the amount of effort and monetary costs required to achieve a particular level of vaccine seroprevalence (efficiency). Simulating host movement relative to different vaccination strategies in silico can provide a useful tool for exploring the efficiency of different vaccination strategies. We refined a previously developed individual-based model of raccoon movement to evaluate vaccination strategies for urban Hamilton, Ontario, Canada. We combined different oral rabies vaccination baiting (hand baiting, helicopter, and bait stations) with TVR strategies and used GPS data to parameterize and simulate raccoon movement in Hamilton. We developed a total of 560 vaccination strategies, in consultation with the Ontario Ministry of Natural Resources and Forestry, for RRV control in Hamilton. We documented the monetary costs of each vaccination strategy and estimated the population seroprevalence. Intervention costs and seroprevalence estimates were used to calculate the efficiency of each strategy to meet targets set for the purpose of RRV control. Estimated seroprevalence across different strategies varied widely, ranging from less than 5% to more than 70%. Increasing bait densities (distributed using by hand or helicopter) led to negligible increase in seroprevalence. Helicopter baiting was the most efficient and TVR was the least efficient, but helicopter-based strategies led to lower levels of seroprevalence (6-12%) than did TVR-based strategies (17-70%). Our simulations indicated that a mixed strategy including at least some TVR may be the most efficient strategy for a local urban RRV control program when seroprevalence levels >30% may be required. Our simulations provide information regarding the efficiency of different vaccination strategies for raccoon populations, to guide local RRV control in urban settings.
Asunto(s)
Vacunas Antirrábicas , Virus de la Rabia , Rabia , Animales , Rabia/epidemiología , Rabia/prevención & control , Rabia/veterinaria , Mapaches , Estudios Seroepidemiológicos , Administración Oral , Vacunación/veterinaria , Ontario/epidemiologíaRESUMEN
Contact among animals is crucial for various ecological processes, including social behaviors, disease transmission, and predator-prey interactions. However, the distribution of contact events across time and space is heterogeneous, influenced by environmental factors and biological purposes. Previous studies have assumed that areas with abundant resources and preferred habitats attract more individuals and, therefore, lead to more contact. To examine the accuracy of this assumption, we used a use-available framework to compare landscape factors influencing the location of contacts between wild pigs (Sus scrofa) in two study areas in Florida and Texas (USA) from those influencing non-contact space use. We employed a contact-resource selection function (RSF) model, where contact locations were defined as used points and locations without contact as available points. By comparing outputs from this contact RSF with a general, population-level RSF, we assessed the factors driving both habitat selection and contact. We found that the landscape predictors (e.g., wetland, linear features, and food resources) played different roles in habitat selection from contact processes for wild pigs in both study areas. This indicated that pigs interacted with their landscapes differently when choosing habitats compared to when they encountered other individuals. Consequently, relying solely on the spatial overlap of individual or population-level RSF models may lead to a misleading understanding of contact-related ecology. Our findings challenge prevailing assumptions about contact and introduce innovative approaches to better understand the ecological drivers of spatially explicit contact. By accurately predicting the spatial distribution of contact events, we can enhance our understanding of contact based ecological processes and their spatial dynamics.
RESUMEN
Introduction: African swine fever (ASF) is a notifiable disease of swine that impacts global pork trade and food security. In several countries across the globe, the disease persists in wild boar (WB) populations sympatric to domestic pig (DP) operations, with continued detections in both sectors. While there is evidence of spillover and spillback between the sectors, the frequency of occurrence and relative importance of different risk factors for transmission at the wildlife-livestock interface remain unclear. Methods: To address this gap, we leveraged ASF surveillance data from WB and DP across Eastern Poland from 2014-2019 in an analysis that quantified the relative importance of different risk factors for explaining variation in each of the ASF surveillance data from WB and DP. Results: ASF prevalence exhibited different seasonal trends across the sectors: apparent prevalence was much higher in summer (84% of detections) in DP, but more consistent throughout the year in WB (highest in winter with 45%, lowest in summer at 15%). Only 21.8% of DP-positive surveillance data included surveillance in WB nearby (within 5 km of the grid cell within the last 4 weeks), while 41.9% of WB-positive surveillance samples included any DP surveillance samples nearby. Thus, the surveillance design afforded twice as much opportunity to find DP-positive samples in the recent vicinity of WB-positive samples compared to the opposite, yet the rate of positive WB samples in the recent vicinity of a positive DP sample was 48 times as likely than the rate of positive DP samples in the recent vicinity of a positive WB sample. Our machine learning analyses found that positive samples in WB were predicted by WB-related risk factors, but not to DP-related risk factors. In contrast, WB risk factors were important for predicting detections in DP on a few spatial and temporal scales of data aggregation. Discussion: Our results highlight that spillover from WB to DP might be more frequent than the reverse, but that the structure of current surveillance systems challenge quantification of spillover frequency and risk factors. Our results emphasize the importance of, and provide guidance for, improving cross-sector surveillance designs.
RESUMEN
IMPORTANCE: Wild birds are the natural reservoir hosts of influenza A viruses. Highly pathogenic strains of influenza A viruses pose risks to wild birds, poultry, and human health. Thus, understanding how these viruses are transmitted between birds is critical. We conducted an experiment where we experimentally infected mallards which are ducks that are commonly exposed to influenza viruses. We exposed several contact ducks to the experimentally infected duck to estimate the probability that a contact duck would become infected from either exposure to the virus shed directly from the infected duck or shared water contaminated with the virus from the infected duck. We found that environmental transmission from contaminated water best predicted the probability of transmission to naïve contact ducks, relatively low levels of virus in the water were sufficient to cause infection, and the probability of a naïve duck becoming infected varied over time.
Asunto(s)
Virus de la Influenza A , Gripe Aviar , Animales , Humanos , Virus de la Influenza A/genética , Patos , Animales Salvajes , AguaRESUMEN
Engineered gene drives create potential for both widespread benefits and irreversible harms to ecosystems. CRISPR-based systems of allelic conversion have rapidly accelerated gene drive research across diverse taxa, putting field trials and their necessary risk assessments on the horizon. Dynamic process-based models provide flexible quantitative platforms to predict gene drive outcomes in the context of system-specific ecological and evolutionary features. Here, we synthesize gene drive dynamic modeling studies to highlight research trends, knowledge gaps, and emergent principles, organized around their genetic, demographic, spatial, environmental, and implementation features. We identify the phenomena that most significantly influence model predictions, discuss limitations of biological complexity and uncertainty, and provide insights to promote responsible development and model-assisted risk assessment of gene drives.
Asunto(s)
Tecnología de Genética Dirigida , Ecosistema , Evolución Biológica , Medición de RiesgoRESUMEN
BACKGROUND: Data on the movement behavior of translocated wild pigs is needed to develop appropriate response strategies for containing and eliminating new source populations following translocation events. We conducted experimental trials to compare the home range establishment and space-use metrics, including the number of days and distance traveled before becoming range residents, for wild pigs translocated with their social group and individually. RESULTS: We found wild pigs translocated with their social group made less extensive movements away from the release location and established a stable home range ~5 days faster than those translocated individually. We also examined how habitat quality impacted the home range sizes of translocated wild pigs and found wild pigs maintained larger ranges in areas with higher proportion of low-quality habitat. CONCLUSION: Collectively, our findings suggest translocations of invasive wild pigs have a greater probability of establishing a viable population near the release site when habitat quality is high and when released with members of their social unit compared to individuals moved independent of their social group or to low-quality habitat. However, all wild pigs translocated in our study made extensive movements from their release location, highlighting the potential for single translocation events of either individuals or groups to have far-reaching consequences within a much broader landscape beyond the location where they are released. These results highlight the challenges associated with containing populations in areas where illegal introduction of wild pigs occurs, and the need for rapid response once releases are identified. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Asunto(s)
Ecosistema , Sus scrofa , Animales , Porcinos , Sus scrofa/fisiología , Fenómenos de Retorno al Lugar Habitual , Movimiento , Estructura SocialRESUMEN
Pathogen transmission depends on host density, mobility and contact. These components emerge from host and pathogen movements that themselves arise through interactions with the surrounding environment. The environment, the emergent host and pathogen movements, and the subsequent patterns of density, mobility and contact form an 'epidemiological landscape' connecting the environment to specific locations where transmissions occur. Conventionally, the epidemiological landscape has been described in terms of the geographical coordinates where hosts or pathogens are located. We advocate for an alternative approach that relates those locations to attributes of the local environment. Environmental descriptions can strengthen epidemiological forecasts by allowing for predictions even when local geographical data are not available. Environmental predictions are more accessible than ever thanks to new tools from movement ecology, and we introduce a 'movement-pathogen pace of life' heuristic to help identify aspects of movement that have the most influence on spatial epidemiology. By linking pathogen transmission directly to the environment, the epidemiological landscape offers an efficient path for using environmental information to inform models describing when and where transmission will occur.
Asunto(s)
Transmisión de Enfermedad Infecciosa , Ecología , Epidemiología , Movimiento , GeografíaRESUMEN
African swine fever virus (ASFv) is a virulent pathogen that threatens domestic swine industries globally and persists in wild boar populations in some countries. Persistence in wild boar can challenge elimination and prevent disease-free status, making it necessary to address wild swine in proactive response plans. In the United States, invasive wild pigs are abundant and found across a wide range of ecological conditions that could drive different epidemiological dynamics among populations. Information on the size of the control areas required to rapidly eliminate the ASFv in wild pigs and how this area should change with management constraints and local ecology is needed to optimize response planning. We developed a spatially explicit disease transmission model contrasting wild pig movement and contact ecology in two ecosystems in Southeastern United States. We simulated ASFv spread and determined the optimal response area (reported as the radius of a circle) for eliminating ASFv rapidly over a range of detection times (when ASFv was detected relative to the true date of introduction), culling capacities (proportion of wild pigs in the culling zone removed weekly) and wild pig densities. Large radii for response areas (14 km) were needed under most conditions but could be shortened with early detection (≤ 8 weeks) and high culling capacities (≥ 15% weekly). Under most conditions, the ASFv was eliminated in less than 22 weeks using optimal control radii, although ecological conditions with high rates of wild pig movement required higher culling capacities (≥ 10% weekly) for elimination within 1 year. The results highlight the importance of adjusting response plans based on local ecology and show that wild pig movement is a better predictor of the optimal response area than the number of ASFv cases early in the outbreak trajectory. Our framework provides a tool for determining optimal control plans in different areas, guiding expectations of response impacts, and planning resources needed for rapid elimination.
Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Enfermedades de los Porcinos , Fiebre Porcina Africana/epidemiología , Fiebre Porcina Africana/prevención & control , Virus de la Fiebre Porcina Africana/fisiología , Animales , Brotes de Enfermedades/prevención & control , Brotes de Enfermedades/veterinaria , Ecosistema , Sus scrofa , PorcinosRESUMEN
Antibiotic-resistant microorganisms (ARMs) are widespread in natural environments, animals (wildlife and livestock), and humans, which has reduced our capacity to control life threatening infectious disease. Yet, little is known about their transmission pathways, especially at the wildlife-livestock interface. This study investigated the potential transmission of ARMs and antibiotic resistance genes (ARGs) between cattle and wildlife by comparing gut microbiota and ARG profiles of feral swine (Sus scrofa), coyotes (Canis latrans), cattle (Bos taurus), and environmental microbiota. Unexpectedly, wild animals harbored more abundant ARMs and ARGs compared to grazing cattle. Gut microbiota of cattle was significantly more similar to that of feral swine captured within the cattle grazing area where the home range of both species overlapped substantially. In addition, ARMs against medically important antibiotics were more prevalent in wildlife than grazing cattle, suggesting that wildlife could be a source of ARMs colonization in livestock.
Asunto(s)
Animales Salvajes , Ganado , Animales , Bovinos , Farmacorresistencia Microbiana/genéticaRESUMEN
Animal disease surveillance is an important component of the national veterinary infrastructure to protect animal agriculture and facilitates identification of foreign animal disease (FAD) introduction. Once introduced, pathogens shared among domestic and wild animals are especially challenging to manage due to the complex ecology of spillover and spillback. Thus, early identification of FAD in wildlife is critical to minimize outbreak severity and potential impacts on animal agriculture as well as potential impacts on wildlife and biodiversity. As a result, national surveillance and monitoring programs that include wildlife are becoming increasingly common. Designing surveillance systems in wildlife or, more importantly, at the interface of wildlife and domestic animals, is especially challenging because of the frequent lack of ecological and epidemiological data for wildlife species and technical challenges associated with a lack of non-invasive methodologies. To meet the increasing need for targeted FAD surveillance and to address gaps in existing wildlife surveillance systems, we developed an adaptive risk-based targeted surveillance approach that accounts for risks in source and recipient host populations. The approach is flexible, accounts for changing disease risks through time, can be scaled from local to national extents and permits the inclusion of quantitative data or when information is limited to expert opinion. We apply this adaptive risk-based surveillance framework to prioritize areas for surveillance in wild pigs in the United States with the objective of early detection of three diseases: classical swine fever, African swine fever and foot-and-mouth disease. We discuss our surveillance framework, its application to wild pigs and discuss the utility of this framework for surveillance of other host species and diseases.
Asunto(s)
Fiebre Porcina Africana , Fiebre Aftosa , Enfermedades de los Porcinos , Animales , Animales Salvajes , Flavina-Adenina Dinucleótido , Fiebre Aftosa/epidemiología , Ganado , Sus scrofa , Porcinos , Enfermedades de los Porcinos/epidemiología , Estados UnidosRESUMEN
Evaluating the efficacy of management actions to control invasive species is crucial for maintaining funding and to provide feedback for the continual improvement of management efforts. However, it is often difficult to assess the efficacy of control methods due to limited resources for monitoring. Managers may view effort on monitoring as effort taken away from performing management actions. We developed a method to estimate invasive species abundance, evaluate management effectiveness, and evaluate population growth over time from a combination of removal activities (e.g., trapping, ground shooting) using only data collected during removal efforts (method of removal, date, location, number of animals removed, and effort). This dynamic approach allows for abundance estimation at discrete time points and the estimation of population growth between removal periods. To test this approach, we simulated over 1 million conditions, including varying the length of the study, the size of the area examined, the number of removal events, the capture rates, and the area impacted by removal efforts. Our estimates were unbiased (within 10% of truth) 81% of the time and were correlated with truth 91% of the time. This method performs well overall and, in particular, at monitoring trends in abundances over time. We applied this method to removal data from Mingo National Wildlife Refuge in Missouri from December 2015 to September 2019, where the management objective is elimination. Populations of feral swine on Mingo NWR have fluctuated over time but showed marked declines in the last 3-6 months of the time series corresponding to increased removal pressure. Our approach allows for the estimation of population growth across time (from both births and immigration) and therefore, provides a target removal rate (above that of the population growth) to ensure the population will decline. In Mingo NWR, the target monthly removal rate is 18% to cause a population decline. Our method provides advancement over traditional removal modeling approaches because it can be applied to evaluate management programs that use a broad range of removal techniques concurrently and whose management effort and spatial coverage vary across time.
Asunto(s)
Animales Salvajes , Especies Introducidas , Animales , Recolección de Datos , Densidad de Población , PorcinosRESUMEN
Dispersal drives invasion dynamics of nonnative species and pathogens. Applying knowledge of dispersal to optimize the management of invasions can mean the difference between a failed and a successful control program and dramatically improve the return on investment of control efforts. A common approach to identifying optimal management solutions for invasions is to optimize dynamic spatial models that incorporate dispersal. Optimizing these spatial models can be very challenging because the interaction of time, space, and uncertainty rapidly amplifies the number of dimensions being considered. Addressing such problems requires advances in and the integration of techniques from multiple fields, including ecology, decision analysis, bioeconomics, natural resource management, and optimization. By synthesizing recent advances from these diverse fields, we provide a workflow for applying ecological theory to advance optimal management science and highlight priorities for optimizing the control of invasions. One of the striking gaps we identify is the extremely limited consideration of dispersal uncertainty in optimal management frameworks, even though dispersal estimates are highly uncertain and greatly influence invasion outcomes. In addition, optimization frameworks rarely consider multiple types of uncertainty (we describe five major types) and their interrelationships. Thus, feedbacks from management or other sources that could magnify uncertainty in dispersal are rarely considered. Incorporating uncertainty is crucial for improving transparency in decision risks and identifying optimal management strategies. We discuss gaps and solutions to the challenges of optimization using dynamic spatial models to increase the practical application of these important tools and improve the consistency and robustness of management recommendations for invasions.