Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Science ; 384(6695): 563-572, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38696572

RESUMEN

A molecular clock network is crucial for daily physiology and maintaining organismal health. We examined the interactions and importance of intratissue clock networks in muscle tissue maintenance. In arrhythmic mice showing premature aging, we created a basic clock module involving a central and a peripheral (muscle) clock. Reconstituting the brain-muscle clock network is sufficient to preserve fundamental daily homeostatic functions and prevent premature muscle aging. However, achieving whole muscle physiology requires contributions from other peripheral clocks. Mechanistically, the muscle peripheral clock acts as a gatekeeper, selectively suppressing detrimental signals from the central clock while integrating important muscle homeostatic functions. Our research reveals the interplay between the central and peripheral clocks in daily muscle function and underscores the impact of eating patterns on these interactions.


Asunto(s)
Envejecimiento Prematuro , Envejecimiento , Encéfalo , Ritmo Circadiano , Músculo Esquelético , Animales , Masculino , Ratones , Envejecimiento/genética , Envejecimiento/fisiología , Envejecimiento Prematuro/genética , Envejecimiento Prematuro/prevención & control , Encéfalo/fisiología , Relojes Circadianos/fisiología , Ritmo Circadiano/genética , Ritmo Circadiano/fisiología , Homeostasis , Músculo Esquelético/fisiología , Ratones Noqueados , Factores de Transcripción ARNTL/genética
2.
Nature ; 629(8010): 154-164, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38649488

RESUMEN

Muscle atrophy and functional decline (sarcopenia) are common manifestations of frailty and are critical contributors to morbidity and mortality in older people1. Deciphering the molecular mechanisms underlying sarcopenia has major implications for understanding human ageing2. Yet, progress has been slow, partly due to the difficulties of characterizing skeletal muscle niche heterogeneity (whereby myofibres are the most abundant) and obtaining well-characterized human samples3,4. Here we generate a single-cell/single-nucleus transcriptomic and chromatin accessibility map of human limb skeletal muscles encompassing over 387,000 cells/nuclei from individuals aged 15 to 99 years with distinct fitness and frailty levels. We describe how cell populations change during ageing, including the emergence of new populations in older people, and the cell-specific and multicellular network features (at the transcriptomic and epigenetic levels) associated with these changes. On the basis of cross-comparison with genetic data, we also identify key elements of chromatin architecture that mark susceptibility to sarcopenia. Our study provides a basis for identifying targets in the skeletal muscle that are amenable to medical, pharmacological and lifestyle interventions in late life.


Asunto(s)
Envejecimiento , Músculo Esquelético , Análisis de la Célula Individual , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Envejecimiento/genética , Envejecimiento/patología , Envejecimiento/fisiología , Núcleo Celular/metabolismo , Cromatina/metabolismo , Cromatina/genética , Susceptibilidad a Enfermedades , Epigénesis Genética , Fragilidad/genética , Fragilidad/patología , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/genética , Atrofia Muscular/patología , Sarcopenia/genética , Sarcopenia/patología , Transcriptoma
4.
FEBS J ; 290(5): 1161-1185, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35811491

RESUMEN

Cellular senescence is a state of irreversible cell cycle arrest that often emerges after tissue damage and in age-related diseases. Through the production of a multicomponent secretory phenotype (SASP), senescent cells can impact the regeneration and function of tissues. However, the effects of senescent cells and their SASP are very heterogeneous and depend on the tissue environment and type as well as the duration of injury, the degree of persistence of senescent cells and the organism's age. While the transient presence of senescent cells is widely believed to be beneficial, recent data suggest that it is detrimental for tissue regeneration after acute damage. Furthermore, although senescent cell persistence is typically associated with the progression of age-related chronic degenerative diseases, it now appears to be also necessary for correct tissue function in the elderly. Here, we discuss what is currently known about the roles of senescent cells and their SASP in tissue regeneration in ageing and age-related diseases, highlighting their (negative and/or positive) contributions. We provide insight for future research, including the possibility of senolytic-based therapies and cellular reprogramming, with aims ranging from enhancing tissue repair to extending a healthy lifespan.


Asunto(s)
Senescencia Celular , Longevidad , Senescencia Celular/genética , Fenotipo , Transporte Biológico
5.
Nature ; 613(7942): 169-178, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36544018

RESUMEN

Tissue regeneration requires coordination between resident stem cells and local niche cells1,2. Here we identify that senescent cells are integral components of the skeletal muscle regenerative niche that repress regeneration at all stages of life. The technical limitation of senescent-cell scarcity3 was overcome by combining single-cell transcriptomics and a senescent-cell enrichment sorting protocol. We identified and isolated different senescent cell types from damaged muscles of young and old mice. Deeper transcriptome, chromatin and pathway analyses revealed conservation of cell identity traits as well as two universal senescence hallmarks (inflammation and fibrosis) across cell type, regeneration time and ageing. Senescent cells create an aged-like inflamed niche that mirrors inflammation associated with ageing (inflammageing4) and arrests stem cell proliferation and regeneration. Reducing the burden of senescent cells, or reducing their inflammatory secretome through CD36 neutralization, accelerates regeneration in young and old mice. By contrast, transplantation of senescent cells delays regeneration. Our results provide a technique for isolating in vivo senescent cells, define a senescence blueprint for muscle, and uncover unproductive functional interactions between senescent cells and stem cells in regenerative niches that can be overcome. As senescent cells also accumulate in human muscles, our findings open potential paths for improving muscle repair throughout life.


Asunto(s)
Envejecimiento , Senescencia Celular , Inflamación , Músculo Esquelético , Regeneración , Nicho de Células Madre , Anciano , Animales , Humanos , Ratones , Envejecimiento/metabolismo , Envejecimiento/fisiología , Senescencia Celular/fisiología , Inflamación/metabolismo , Inflamación/fisiopatología , Músculo Esquelético/fisiología , Músculo Esquelético/fisiopatología , Células Madre/fisiología , Fibrosis/fisiopatología , Nicho de Células Madre/fisiología , Transcriptoma , Cromatina/genética , Gerociencia
6.
Nat Aging ; 2: 851-866, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36438588

RESUMEN

Cellular senescence is a stable type of cell cycle arrest triggered by different stresses. As such, senescence drives age-related diseases and curbs cellular replicative potential. Here, we show that 3-deazaadenosine (3DA), an S-adenosyl homocysteinase (AHCY) inhibitor, alleviates replicative and oncogene-induced senescence. 3DA-treated senescent cells showed reduced global Histone H3 Lysine 36 trimethylation (H3K36me3), an epigenetic modification that marks the bodies of actively transcribed genes. By integrating transcriptome and epigenome data, we demonstrate that 3DA treatment affects key factors of the senescence transcriptional program. Remarkably, 3DA treatment alleviated senescence and increased the proliferative and regenerative potential of muscle stem cells from very old mice in vitro and in vivo. Moreover, ex vivo 3DA treatment was sufficient to enhance the engraftment of human umbilical cord blood (UCB) cells in immunocompromised mice. Together, our results identify 3DA as a promising drug enhancing the efficiency of cellular therapies by restraining senescence.


Asunto(s)
Senescencia Celular , Histonas , Humanos , Ratones , Animales , Histonas/genética , Senescencia Celular/genética , Tubercidina/farmacología , Epigénesis Genética
8.
Cell Stem Cell ; 29(9): 1298-1314.e10, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35998641

RESUMEN

Skeletal muscle regeneration depends on the correct expansion of resident quiescent stem cells (satellite cells), a process that becomes less efficient with aging. Here, we show that mitochondrial dynamics are essential for the successful regenerative capacity of satellite cells. The loss of mitochondrial fission in satellite cells-due to aging or genetic impairment-deregulates the mitochondrial electron transport chain (ETC), leading to inefficient oxidative phosphorylation (OXPHOS) metabolism and mitophagy and increased oxidative stress. This state results in muscle regenerative failure, which is caused by the reduced proliferation and functional loss of satellite cells. Regenerative functions can be restored in fission-impaired or aged satellite cells by the re-establishment of mitochondrial dynamics (by activating fission or preventing fusion), OXPHOS, or mitophagy. Thus, mitochondrial shape and physical networking controls stem cell regenerative functions by regulating metabolism and proteostasis. As mitochondrial fission occurs less frequently in the satellite cells in older humans, our findings have implications for regeneration therapies in sarcopenia.


Asunto(s)
Dinámicas Mitocondriales , Mitofagia , Anciano , Humanos , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Músculos/metabolismo , Células Madre/metabolismo
9.
Nat Commun ; 12(1): 5043, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34413292

RESUMEN

Skeletal muscle has a remarkable ability to regenerate owing to its resident stem cells (also called satellite cells, SCs). SCs are normally quiescent; when stimulated by damage, they activate and expand to form new fibers. The mechanisms underlying SC proliferative progression remain poorly understood. Here we show that DHX36, a helicase that unwinds RNA G-quadruplex (rG4) structures, is essential for muscle regeneration by regulating SC expansion. DHX36 (initially named RHAU) is barely expressed at quiescence but is highly induced during SC activation and proliferation. Inducible deletion of Dhx36 in adult SCs causes defective proliferation and muscle regeneration after damage. System-wide mapping in proliferating SCs reveals DHX36 binding predominantly to rG4 structures at various regions of mRNAs, while integrated polysome profiling shows that DHX36 promotes mRNA translation via 5'-untranslated region (UTR) rG4 binding. Furthermore, we demonstrate that DHX36 specifically regulates the translation of Gnai2 mRNA by unwinding its 5' UTR rG4 structures and identify GNAI2 as a downstream effector of DHX36 for SC expansion. Altogether, our findings uncover DHX36 as an indispensable post-transcriptional regulator of SC function and muscle regeneration acting through binding and unwinding rG4 structures at 5' UTR of target mRNAs.


Asunto(s)
Regiones no Traducidas 5' , ARN Helicasas DEAD-box/metabolismo , G-Cuádruplex , Músculos/citología , Regeneración/fisiología , Células Madre/citología , Animales , Animales Modificados Genéticamente , Células Cultivadas , Modelos Animales de Enfermedad , Subunidad alfa de la Proteína de Unión al GTP Gi2/metabolismo , Regulación de la Expresión Génica , Humanos , Ratones , Músculos/metabolismo , Mioblastos/metabolismo , Polirribosomas/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/genética , Células Madre/metabolismo
10.
Stem Cell Reports ; 16(9): 2089-2098, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34450038

RESUMEN

Regeneration of skeletal muscle requires resident stem cells called satellite cells. Here, we report that the chromatin remodeler CHD4, a member of the nucleosome remodeling and deacetylase (NuRD) repressive complex, is essential for the expansion and regenerative functions of satellite cells. We show that conditional deletion of the Chd4 gene in satellite cells results in failure to regenerate muscle after injury. This defect is principally associated with increased stem cell plasticity and lineage infidelity during the expansion of satellite cells, caused by de-repression of non-muscle-cell lineage genes in the absence of Chd4. Thus, CHD4 ensures that a transcriptional program that safeguards satellite cell identity during muscle regeneration is maintained. Given the therapeutic potential of muscle stem cells in diverse neuromuscular pathologies, CHD4 constitutes an attractive target for satellite cell-based therapies.


Asunto(s)
Diferenciación Celular/genética , Linaje de la Célula/genética , ADN Helicasas/genética , Músculo Esquelético/fisiología , Regeneración , Células Madre/citología , Células Madre/metabolismo , Animales , Biología Computacional , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Ratones , Modelos Biológicos , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/metabolismo
11.
Nat Cell Biol ; 22(11): 1307-1318, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33106654

RESUMEN

Tissue regeneration declines with ageing but little is known about whether this arises from changes in stem-cell heterogeneity. Here, in homeostatic skeletal muscle, we identify two quiescent stem-cell states distinguished by relative CD34 expression: CD34High, with stemness properties (genuine state), and CD34Low, committed to myogenic differentiation (primed state). The genuine-quiescent state is unexpectedly preserved into later life, succumbing only in extreme old age due to the acquisition of primed-state traits. Niche-derived IGF1-dependent Akt activation debilitates the genuine stem-cell state by imposing primed-state features via FoxO inhibition. Interventions to neutralize Akt and promote FoxO activity drive a primed-to-genuine state conversion, whereas FoxO inactivation deteriorates the genuine state at a young age, causing regenerative failure of muscle, as occurs in geriatric mice. These findings reveal transcriptional determinants of stem-cell heterogeneity that resist ageing more than previously anticipated and are only lost in extreme old age, with implications for the repair of geriatric muscle.


Asunto(s)
Antígenos CD34/metabolismo , Proliferación Celular , Autorrenovación de las Células , Senescencia Celular , Factores de Transcripción Forkhead/metabolismo , Músculo Esquelético/metabolismo , Regeneración , Células Satélite del Músculo Esquelético/metabolismo , Factores de Edad , Animales , Cardiotoxinas/toxicidad , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Autorrenovación de las Células/efectos de los fármacos , Autorrenovación de las Células/genética , Células Cultivadas , Senescencia Celular/efectos de los fármacos , Senescencia Celular/genética , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Factores de Transcripción Forkhead/genética , Regulación de la Expresión Génica , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones SCID , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Músculo Esquelético/trasplante , Fenotipo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Regeneración/efectos de los fármacos , Regeneración/genética , Células Satélite del Músculo Esquelético/efectos de los fármacos , Células Satélite del Músculo Esquelético/patología , Células Satélite del Músculo Esquelético/trasplante , Transducción de Señal , Nicho de Células Madre
12.
Cell Rep ; 31(7): 107652, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32433961

RESUMEN

Somatic stem cells expand massively during tissue regeneration, which might require control of cell fitness, allowing elimination of non-competitive, potentially harmful cells. How or if such cells are removed to restore organ function is not fully understood. Here, we show that a substantial fraction of muscle stem cells (MuSCs) undergo necroptosis because of epigenetic rewiring during chronic skeletal muscle regeneration, which is required for efficient regeneration of dystrophic muscles. Inhibition of necroptosis strongly enhances suppression of MuSC expansion in a non-cell-autonomous manner. Prevention of necroptosis in MuSCs of healthy muscles is mediated by the chromatin remodeler CHD4, which directly represses the necroptotic effector Ripk3, while CHD4-dependent Ripk3 repression is dramatically attenuated in dystrophic muscles. Loss of Ripk3 repression by inactivation of Chd4 causes massive necroptosis of MuSCs, abolishing regeneration. Our study demonstrates how programmed cell death in MuSCs is tightly controlled to achieve optimal tissue regeneration.


Asunto(s)
Epigénesis Genética/genética , Músculo Esquelético/metabolismo , Necroptosis/genética , Humanos
13.
EMBO Rep ; 21(4): e49075, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32107853

RESUMEN

Macrophages are characterized by a high plasticity in response to changes in tissue microenvironment, which allows them to acquire different phenotypes and to exert essential functions in complex processes, such as tissue regeneration. Here, we report that the membrane protein Cripto plays a key role in shaping macrophage plasticity in skeletal muscle during regeneration and disease. Conditional deletion of Cripto in the myeloid lineage (CriptoMy-LOF ) perturbs MP plasticity in acutely injured muscle and in mouse models of Duchenne muscular dystrophy (mdx). Specifically, CriptoMy-LOF macrophages infiltrate the muscle, but fail to properly expand as anti-inflammatory CD206+ macrophages, which is due, at least in part, to aberrant activation of TGFß/Smad signaling. This reduction in macrophage plasticity disturbs vascular remodeling by increasing Endothelial-to-Mesenchymal Transition (EndMT), reduces muscle regenerative potential, and leads to an exacerbation of the dystrophic phenotype. Thus, in muscle-infiltrating macrophages, Cripto is required to promote the expansion of the CD206+ anti-inflammatory macrophage type and to restrict the EndMT process, providing a direct functional link between this macrophage population and endothelial cells.


Asunto(s)
Células Endoteliales , Distrofia Muscular de Duchenne , Animales , Macrófagos , Ratones , Ratones Endogámicos mdx , Músculo Esquelético
14.
Nat Commun ; 11(1): 189, 2020 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-31929511

RESUMEN

A unique property of skeletal muscle is its ability to adapt its mass to changes in activity. Inactivity, as in disuse or aging, causes atrophy, the loss of muscle mass and strength, leading to physical incapacity and poor quality of life. Here, through a combination of transcriptomics and transgenesis, we identify sestrins, a family of stress-inducible metabolic regulators, as protective factors against muscle wasting. Sestrin expression decreases during inactivity and its genetic deficiency exacerbates muscle wasting; conversely, sestrin overexpression suffices to prevent atrophy. This protection occurs through mTORC1 inhibition, which upregulates autophagy, and AKT activation, which in turn inhibits FoxO-regulated ubiquitin-proteasome-mediated proteolysis. This study reveals sestrin as a central integrator of anabolic and degradative pathways preventing muscle wasting. Since sestrin also protected muscles against aging-induced atrophy, our findings have implications for sarcopenia.


Asunto(s)
Proteínas de Choque Térmico/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/prevención & control , Proteínas Nucleares/metabolismo , Transducción de Señal , Envejecimiento , Animales , Autofagia , Modelos Animales de Enfermedad , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Expresión Génica , Proteínas de Choque Térmico/genética , Humanos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Proteínas Nucleares/genética , Sarcopenia/genética , Sarcopenia/metabolismo , Sarcopenia/patología , Sarcopenia/prevención & control
15.
Methods Mol Biol ; 2045: 13-23, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30771188

RESUMEN

The maintenance of adult stem cells in their normal quiescent state depends on intrinsic factors and extrinsic signals originating from their microenvironment (also known as the stem cell niche). In skeletal muscle, its stem cells (satellite cells) lose their regenerative potential with aging, and this has been attributed, at least in part, to both age-associated changes in the satellite cells as in the niche cells, which include resident fibro-adipogenic progenitors (FAPs), macrophages, and endothelial cells, among others. To understand the regenerative decline of skeletal muscle with aging, there is a need for methods to specifically isolate stem and niche cells from resting muscle. Here we describe a fluorescence-activated cell sorting (FACS) protocol to simultaneously isolate discrete populations of satellite cells and niche cells from skeletal muscle of aging mice.


Asunto(s)
Células Madre Adultas/metabolismo , Citometría de Flujo/métodos , Macrófagos/metabolismo , Células Madre Mesenquimatosas/metabolismo , Músculo Esquelético/metabolismo , Células Satélite del Músculo Esquelético/metabolismo , Nicho de Células Madre/genética , Células Madre Adultas/citología , Envejecimiento , Animales , Anticuerpos , Células Endoteliales/citología , Células Endoteliales/metabolismo , Macrófagos/citología , Células Madre Mesenquimatosas/citología , Ratones , Músculo Esquelético/citología , Reacción en Cadena en Tiempo Real de la Polimerasa , Regeneración , Células Satélite del Músculo Esquelético/citología , Nicho de Células Madre/fisiología , Flujo de Trabajo
16.
Curr Opin Pharmacol ; 40: 147-155, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29883814

RESUMEN

Aging is the prime risk factor for the broad-based development of diseases. Frailty is a phenotypical hallmark of aging and is often used to assess whether the predicted benefits of a therapy outweigh the risks for older patients. Senescent cells form as a consequence of unresolved molecular damage and persistently secrete molecules that can impair tissue function. Recent evidence shows senescent cells can chronically interfere with stem cell function and drive aging of the musculoskeletal system. In addition, targeted apoptosis of senescent cells can restore tissue homeostasis in aged animals. Thus, targeting cellular senescence provides new therapeutic opportunities for the intervention of frailty-associated pathologies and could have pleiotropic health benefits.


Asunto(s)
Senescencia Celular/efectos de los fármacos , Terapia Molecular Dirigida/métodos , Enfermedades Musculoesqueléticas/tratamiento farmacológico , Sistema Musculoesquelético/efectos de los fármacos , Regeneración/efectos de los fármacos , Factores de Edad , Animales , Apoptosis/efectos de los fármacos , Remodelación Ósea/efectos de los fármacos , Huesos/efectos de los fármacos , Huesos/metabolismo , Huesos/patología , Huesos/fisiopatología , Cartílago/efectos de los fármacos , Cartílago/metabolismo , Cartílago/patología , Cartílago/fisiopatología , Condrogénesis/efectos de los fármacos , Diseño de Fármacos , Humanos , Desarrollo de Músculos/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Enfermedades Musculoesqueléticas/metabolismo , Enfermedades Musculoesqueléticas/patología , Enfermedades Musculoesqueléticas/fisiopatología , Sistema Musculoesquelético/metabolismo , Sistema Musculoesquelético/patología , Sistema Musculoesquelético/fisiopatología , Transducción de Señal/efectos de los fármacos
17.
Cell ; 170(4): 678-692.e20, 2017 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-28802040

RESUMEN

Normal homeostatic functions of adult stem cells have rhythmic daily oscillations that are believed to become arrhythmic during aging. Unexpectedly, we find that aged mice remain behaviorally circadian and that their epidermal and muscle stem cells retain a robustly rhythmic core circadian machinery. However, the oscillating transcriptome is extensively reprogrammed in aged stem cells, switching from genes involved in homeostasis to those involved in tissue-specific stresses, such as DNA damage or inefficient autophagy. Importantly, deletion of circadian clock components did not reproduce the hallmarks of this reprogramming, underscoring that rewiring, rather than arrhythmia, is associated with physiological aging. While age-associated rewiring of the oscillatory diurnal transcriptome is not recapitulated by a high-fat diet in young adult mice, it is significantly prevented by long-term caloric restriction in aged mice. Thus, stem cells rewire their diurnal timed functions to adapt to metabolic cues and to tissue-specific age-related traits.


Asunto(s)
Células Madre Adultas/patología , Senescencia Celular , Ritmo Circadiano , Epidermis/patología , Músculo Esquelético/patología , Células Madre Adultas/fisiología , Animales , Autofagia , Restricción Calórica , Relojes Circadianos , Daño del ADN , Dieta Alta en Grasa , Homeostasis , Ratones , Estrés Fisiológico , Transcriptoma
18.
Dev Cell ; 42(2): 114-116, 2017 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-28743000

RESUMEN

Fibro/adipogenic progenitors (FAPs) are emerging as crucial regulators of fibrous and fat deposits during skeletal muscle regeneration. In a recent issue of Cell, Kopinke et al. (2017) report that primary cilia induce the adipogenic fate of FAPs in injured and diseased muscle by restraining Hedgehog signaling.


Asunto(s)
Adipocitos , Cilios , Adipogénesis , Diferenciación Celular , Humanos , Músculo Esquelético
19.
Stem Cells ; 35(7): 1687-1703, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28472853

RESUMEN

Coenzyme Q10 (CoQ10 ) plays a crucial role in mitochondria as an electron carrier within the mitochondrial respiratory chain (MRC) and is an essential antioxidant. Mutations in genes responsible for CoQ10 biosynthesis (COQ genes) cause primary CoQ10 deficiency, a rare and heterogeneous mitochondrial disorder with no clear genotype-phenotype association, mainly affecting tissues with high-energy demand including brain and skeletal muscle (SkM). Here, we report a four-year-old girl diagnosed with minor mental retardation and lethal rhabdomyolysis harboring a heterozygous mutation (c.483G > C (E161D)) in COQ4. The patient's fibroblasts showed a decrease in [CoQ10 ], CoQ10 biosynthesis, MRC activity affecting complexes I/II + III, and respiration defects. Bona fide induced pluripotent stem cell (iPSCs) lines carrying the COQ4 mutation (CQ4-iPSCs) were generated, characterized and genetically edited using the CRISPR-Cas9 system (CQ4ed -iPSCs). Extensive differentiation and metabolic assays of control-iPSCs, CQ4-iPSCs and CQ4ed -iPSCs demonstrated a genotype association, reproducing the disease phenotype. The COQ4 mutation in iPSC was associated with CoQ10 deficiency, metabolic dysfunction, and respiration defects. iPSC differentiation into SkM was compromised, and the resulting SkM also displayed respiration defects. Remarkably, iPSC differentiation in dopaminergic or motor neurons was unaffected. This study offers an unprecedented iPSC model recapitulating CoQ10 deficiency-associated functional and metabolic phenotypes caused by COQ4 mutation. Stem Cells 2017;35:1687-1703.


Asunto(s)
Ataxia/genética , Discapacidad Intelectual/genética , Mitocondrias/genética , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Debilidad Muscular/genética , Rabdomiólisis/genética , Ubiquinona/análogos & derivados , Ubiquinona/deficiencia , Ataxia/enzimología , Ataxia/patología , Sistemas CRISPR-Cas , Diferenciación Celular , Preescolar , Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/genética , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Resultado Fatal , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Edición Génica/métodos , Expresión Génica , Genes Letales , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Discapacidad Intelectual/enzimología , Discapacidad Intelectual/patología , Mitocondrias/enzimología , Mitocondrias/patología , Enfermedades Mitocondriales/enzimología , Enfermedades Mitocondriales/patología , Proteínas Mitocondriales/deficiencia , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Debilidad Muscular/enzimología , Debilidad Muscular/patología , Cultivo Primario de Células , Rabdomiólisis/enzimología , Rabdomiólisis/patología , Ubiquinona/genética
20.
Methods Mol Biol ; 1556: 3-19, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28247342

RESUMEN

Skeletal muscle stem cells, originally termed satellite cells for their position adjacent to differentiated muscle fibers, are absolutely required for the process of skeletal muscle repair and regeneration. In the last decade, satellite cells have become one of the most studied adult stem cell systems and have emerged as a standard model not only in the field of stem cell-driven tissue regeneration but also in stem cell dysfunction and aging. Here, we provide background in the field and discuss recent advances in our understanding of muscle stem cell function and dysfunction, particularly in the case of aging, and the potential involvement of muscle stem cells in genetic diseases such as the muscular dystrophies.


Asunto(s)
Músculo Esquelético/citología , Células Madre/citología , Células Madre/fisiología , Células Madre Adultas/citología , Células Madre Adultas/fisiología , Animales , Biomarcadores , Diferenciación Celular , Senescencia Celular/genética , Humanos , Distrofias Musculares/etiología , Distrofias Musculares/metabolismo , Fenotipo , Regeneración , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA