Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
JAMA Netw Open ; 7(4): e248255, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38656577

RESUMEN

Importance: Studies of influenza in children commonly rely on coded diagnoses, yet the ability of International Classification of Diseases, Ninth Revision codes to identify influenza in the emergency department (ED) and hospital is highly variable. The accuracy of newer International Statistical Classification of Diseases and Related Health Problems, Tenth Revision (ICD-10) codes to identify influenza in children is unknown. Objective: To determine the accuracy of ICD-10 influenza discharge diagnosis codes in the pediatric ED and inpatient settings. Design, Setting, and Participants: Children younger than 18 years presenting to the ED or inpatient settings with fever and/or respiratory symptoms at 7 US pediatric medical centers affiliated with the Centers for Disease Control and Prevention-sponsored New Vaccine Surveillance Network from December 1, 2016, to March 31, 2020, were included in this cohort study. Nasal and/or throat swabs were collected for research molecular testing for influenza, regardless of clinical testing. Data, including ICD-10 discharge diagnoses and clinical testing for influenza, were obtained through medical record review. Data analysis was performed in August 2023. Main Outcomes and Measures: The accuracy of ICD-10-coded discharge diagnoses was characterized using molecular clinical or research laboratory test results as reference. Measures included sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). Estimates were stratified by setting (ED vs inpatient) and age (0-1, 2-4, and 5-17 years). Results: A total of 16 867 children in the ED (median [IQR] age, 2.0 [0.0-4.0] years; 9304 boys [55.2%]) and 17 060 inpatients (median [IQR] age, 1.0 [0.0-4.0] years; 9798 boys [57.4%]) were included. In the ED, ICD-10 influenza diagnoses were highly specific (98.0%; 95% CI, 97.8%-98.3%), with high PPV (88.6%; 95% CI, 88.0%-89.2%) and high NPV (85.9%; 95% CI, 85.3%-86.6%), but sensitivity was lower (48.6%; 95% CI, 47.6%-49.5%). Among inpatients, specificity was 98.2% (95% CI, 98.0%-98.5%), PPV was 82.8% (95% CI, 82.1%-83.5%), sensitivity was 70.7% (95% CI, 69.8%-71.5%), and NPV was 96.5% (95% CI, 96.2%-96.9%). Accuracy of ICD-10 diagnoses varied by patient age, influenza season definition, time between disease onset and testing, and clinical setting. Conclusions and Relevance: In this large cohort study, influenza ICD-10 discharge diagnoses were highly specific but moderately sensitive in identifying laboratory-confirmed influenza; the accuracy of influenza diagnoses varied by clinical and epidemiological factors. In the ED and inpatient settings, an ICD-10 diagnosis likely represents a true-positive influenza case.


Asunto(s)
Gripe Humana , Clasificación Internacional de Enfermedades , Humanos , Gripe Humana/diagnóstico , Gripe Humana/epidemiología , Niño , Preescolar , Masculino , Femenino , Lactante , Adolescente , Estados Unidos/epidemiología , Servicio de Urgencia en Hospital/estadística & datos numéricos , Sensibilidad y Especificidad , Estudios de Cohortes
2.
Pediatrics ; 153(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38298053

RESUMEN

BACKGROUND: Respiratory syncytial virus (RSV) is the leading cause of hospitalization in US infants. Accurate estimates of severe RSV disease inform policy decisions for RSV prevention. METHODS: We conducted prospective surveillance for children <5 years old with acute respiratory illness from 2016 to 2020 at 7 pediatric hospitals. We interviewed parents, reviewed medical records, and tested midturbinate nasal ± throat swabs by reverse transcription polymerase chain reaction for RSV and other respiratory viruses. We describe characteristics of children hospitalized with RSV, risk factors for ICU admission, and estimate RSV-associated hospitalization rates. RESULTS: Among 13 524 acute respiratory illness inpatients <5 years old, 4243 (31.4%) were RSV-positive; 2751 (64.8%) of RSV-positive children had no underlying condition or history of prematurity. The average annual RSV-associated hospitalization rate was 4.0 (95% confidence interval [CI]: 3.8-4.1) per 1000 children <5 years, was highest among children 0 to 2 months old (23.8 [95% CI: 22.5-25.2] per 1000) and decreased with increasing age. Higher RSV-associated hospitalization rates were found in premature versus term children (rate ratio = 1.95 [95% CI: 1.76-2.11]). Risk factors for ICU admission among RSV-positive inpatients included: age 0 to 2 and 3 to 5 months (adjusted odds ratio [aOR] = 1.97 [95% CI: 1.54-2.52] and aOR = 1.56 [95% CI: 1.18-2.06], respectively, compared with 24-59 months), prematurity (aOR = 1.32 [95% CI: 1.08-1.60]) and comorbid conditions (aOR = 1.35 [95% CI: 1.10-1.66]). CONCLUSIONS: Younger infants and premature children experienced the highest rates of RSV-associated hospitalization and had increased risk of ICU admission. RSV prevention products are needed to reduce RSV-associated morbidity in young infants.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Virus Sincitiales Respiratorios , Niño , Lactante , Humanos , Recién Nacido , Preescolar , Estudios Prospectivos , Infecciones por Virus Sincitial Respiratorio/epidemiología , Infecciones por Virus Sincitial Respiratorio/terapia , Hospitalización , Hospitales Pediátricos
3.
MMWR Morb Mortal Wkly Rep ; 72(48): 1300-1306, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38032834

RESUMEN

SARS-CoV-2 infection in young children is often mild or asymptomatic; however, some children are at risk for severe disease. Data describing the protective effectiveness of COVID-19 mRNA vaccines against COVID-19-associated emergency department (ED) visits and hospitalization in this population are limited. Data from the New Vaccine Surveillance Network, a prospective population-based surveillance system, were used to estimate vaccine effectiveness using a test-negative, case-control design and describe the epidemiology of SARS-CoV-2 in infants and children aged 6 months-4 years during July 1, 2022-September 30, 2023. Among 7,434 children included, 5% received a positive SARS-CoV-2 test result, and 95% received a negative test result; 86% were unvaccinated, 4% had received 1 dose of any vaccine product, and 10% had received ≥2 doses. When compared with receipt of no vaccines among children, receipt of ≥2 COVID-19 mRNA vaccine doses was 40% effective (95% CI = 8%-60%) in preventing ED visits and hospitalization. These findings support existing recommendations for COVID-19 vaccination of young children to reduce COVID-19-associated ED visits and hospitalization.


Asunto(s)
COVID-19 , Vacunas , Niño , Lactante , Estados Unidos/epidemiología , Humanos , Preescolar , Vacunas contra la COVID-19 , SARS-CoV-2/genética , Estudios Prospectivos , Eficacia de las Vacunas , COVID-19/epidemiología , COVID-19/prevención & control , Hospitalización , ARN Mensajero
4.
JAMA Netw Open ; 6(2): e2254909, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36749589

RESUMEN

Importance: Rhinoviruses and/or enteroviruses, which continued to circulate during the COVID-19 pandemic, are commonly detected in pediatric patients with acute respiratory illness (ARI). Yet detailed characterization of rhinovirus and/or enterovirus detection over time is limited, especially by age group and health care setting. Objective: To quantify and characterize rhinovirus and/or enterovirus detection before and during the COVID-19 pandemic among children and adolescents seeking medical care for ARI at emergency departments (EDs) or hospitals. Design, Setting, and Participants: This cross-sectional study used data from the New Vaccine Surveillance Network (NVSN), a multicenter, active, prospective surveillance platform, for pediatric patients who sought medical care for fever and/or respiratory symptoms at 7 EDs or hospitals within NVSN across the US between December 2016 and February 2021. Persons younger than 18 years were enrolled in NVSN, and respiratory specimens were collected and tested for multiple viruses. Main Outcomes and Measures: Proportion of patients in whom rhinovirus and/or enterovirus, or another virus, was detected by calendar month and by prepandemic (December 1, 2016, to March 11, 2020) or pandemic (March 12, 2020, to February 28, 2021) periods. Month-specific adjusted odds ratios (aORs) for rhinovirus and/or enterovirus-positive test results (among all tested) by setting (ED or inpatient) and age group (<2, 2-4, or 5-17 years) were calculated, comparing each month during the pandemic to equivalent months of previous years. Results: Of the 38 198 children and adolescents who were enrolled and tested, 11 303 (29.6%; mean [SD] age, 2.8 [3.7] years; 6733 boys [59.6%]) had rhinovirus and/or enterovirus-positive test results. In prepandemic and pandemic periods, rhinoviruses and/or enteroviruses were detected in 29.4% (9795 of 33 317) and 30.9% (1508 of 4881) of all patients who were enrolled and tested and in 42.2% (9795 of 23 236) and 73.0% (1508 of 2066) of those with test positivity for any virus, respectively. Rhinoviruses and/or enteroviruses were the most frequently detected viruses in both periods and all age groups in the ED and inpatient setting. From April to September 2020 (pandemic period), rhinoviruses and/or enteroviruses were detectable at similar or lower odds than in prepandemic years, with aORs ranging from 0.08 (95% CI, 0.04-0.19) to 0.76 (95% CI, 0.55-1.05) in the ED and 0.04 (95% CI, 0.01-0.11) to 0.71 (95% CI, 0.47-1.07) in the inpatient setting. However, unlike some other viruses, rhinoviruses and/or enteroviruses soon returned to prepandemic levels and from October 2020 to February 2021 were detected at similar or higher odds than in prepandemic months in both settings, with aORs ranging from 1.47 (95% CI, 1.12-1.93) to 3.01 (95% CI, 2.30-3.94) in the ED and 1.36 (95% CI, 1.03-1.79) to 2.44 (95% CI, 1.78-3.34) in the inpatient setting, and in all age groups. Compared with prepandemic years, during the pandemic, rhinoviruses and/or enteroviruses were detected in patients who were slightly older, although most (74.5% [1124 of 1508]) were younger than 5 years. Conclusions and Relevance: Results of this study show that rhinoviruses and/or enteroviruses persisted and were the most common respiratory virus group detected across all pediatric age groups and in both ED and inpatient settings. Rhinoviruses and/or enteroviruses remain a leading factor in ARI health care burden, and active ARI surveillance in children and adolescents remains critical for defining the health care burden of respiratory viruses.


Asunto(s)
COVID-19 , Infecciones por Enterovirus , Enterovirus , Masculino , Adolescente , Niño , Humanos , Preescolar , Rhinovirus , Pandemias , Estudios Prospectivos , Estudios Transversales , COVID-19/epidemiología , Infecciones por Enterovirus/diagnóstico , Infecciones por Enterovirus/epidemiología
5.
Zoonoses Public Health ; 69(8): 925-937, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36345968

RESUMEN

Non-typhoidal Salmonella cause an estimated 1.4 million human illnesses, 26,000 hospitalizations and 400 deaths annually in the United States. Approximately 11% of these infections are attributed to animal contact. Reptiles and amphibians are known sources of salmonellosis; young children (aged <5 years) are disproportionately affected by reptile- and amphibian-associated salmonellosis (RAAS) outbreaks. We describe multistate RAAS outbreaks to characterize illnesses and inform prevention efforts. RAAS outbreaks were defined as ≥2 culture-confirmed human Salmonella infections with similar pulsed-field gel electrophoresis patterns and epidemiologic, laboratory or traceback evidence linking them to a common reptile/amphibian exposure. Data sources included the Animal Contact Outbreak Surveillance System; CDC Outbreak Response and Prevention Branch's outbreak management database; PulseNet, the national molecular subtyping network for foodborne disease surveillance in the United States; and the National Antimicrobial Resistance Monitoring System. Twenty-six RAAS outbreaks were reported during 2009-2018, resulting in 1465 illnesses and 306 hospitalizations. The outbreaks were associated with turtles (19), lizards (5), snakes (1) and frogs (1). Sixteen (61.5%) outbreaks were linked to small turtles (<4 inches), resulting in 914 illnesses. Forty-nine percent of outbreak-associated patients were aged <5 years. Of 362 patients/caregivers interviewed, 111 (30.7%) were aware that reptiles/amphibians can carry Salmonella. Among 267 patient isolates with antimicrobial susceptibility information, 20 (7.5%) were non-susceptible to ≥1 antibiotic used to treat human salmonellosis. RAAS outbreaks result in considerable morbidity, particularly among young children. Illnesses linked to small turtles are preventable through education, targeted outreach to caregivers and paediatricians, and when appropriate, enforcement. Historically, individual states and jurisdictions have enforced existing or promulgated new authorities to address outbreaks. Preventing future RAAS outbreaks requires addressing challenges related to the illegal sale/distribution of small turtles; and for legal reptile sales, providing information on RAAS risk to consumers at point of sale to support informed pet ownership decisions.


Asunto(s)
Antiinfecciosos , Lagartos , Intoxicación Alimentaria por Salmonella , Infecciones por Salmonella , Tortugas , Humanos , Estados Unidos/epidemiología , Animales , Infecciones por Salmonella/epidemiología , Intoxicación Alimentaria por Salmonella/epidemiología , Intoxicación Alimentaria por Salmonella/veterinaria , Salmonella , Brotes de Enfermedades , Anfibios
6.
MMWR Morb Mortal Wkly Rep ; 71(40): 1253-1259, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36201373

RESUMEN

The New Vaccine Surveillance Network (NVSN) is a prospective, active, population-based surveillance platform that enrolls children with acute respiratory illnesses (ARIs) at seven pediatric medical centers. ARIs are caused by respiratory viruses including influenza virus, respiratory syncytial virus (RSV), human metapneumovirus (HMPV), human parainfluenza viruses (HPIVs), and most recently SARS-CoV-2 (the virus that causes COVID-19), which result in morbidity among infants and young children (1-6). NVSN estimates the incidence of pathogen-specific pediatric ARIs and collects clinical data (e.g., underlying medical conditions and vaccination status) to assess risk factors for severe disease and calculate influenza and COVID-19 vaccine effectiveness. Current NVSN inpatient (i.e., hospital) surveillance began in 2015, expanded to emergency departments (EDs) in 2016, and to outpatient clinics in 2018. This report describes demographic characteristics of enrolled children who received care in these settings, and yearly circulation of influenza, RSV, HMPV, HPIV1-3, adenovirus, human rhinovirus and enterovirus (RV/EV),* and SARS-CoV-2 during December 2016-August 2021. Among 90,085 eligible infants, children, and adolescents (children) aged <18 years† with ARI, 51,441 (57%) were enrolled, nearly 75% of whom were aged <5 years; 43% were hospitalized. Infants aged <1 year accounted for the largest proportion (38%) of those hospitalized. The most common pathogens detected were RV/EV and RSV. Before the emergence of SARS-CoV-2, detected respiratory viruses followed previously described seasonal trends, with annual peaks of influenza and RSV in late fall and winter (7,8). After the emergence of SARS-CoV-2 and implementation of associated pandemic nonpharmaceutical interventions and community mitigation measures, many respiratory viruses circulated at lower-than-expected levels during April 2020-May 2021. Beginning in summer 2021, NVSN detected higher than anticipated enrollment of hospitalized children as well as atypical interseasonal circulation of RSV. Further analyses of NVSN data and continued surveillance are vital in highlighting risk factors for severe disease and health disparities, measuring the effectiveness of vaccines and monoclonal antibody-based prophylactics, and guiding policies to protect young children from pathogens such as SARS-CoV-2, influenza, and RSV.


Asunto(s)
COVID-19 , Gripe Humana , Metapneumovirus , Virus Sincitial Respiratorio Humano , Infecciones del Sistema Respiratorio , Virus , Adolescente , Anticuerpos Monoclonales , COVID-19/epidemiología , COVID-19/prevención & control , Vacunas contra la COVID-19 , Niño , Preescolar , Humanos , Lactante , Gripe Humana/epidemiología , Estudios Prospectivos , Infecciones del Sistema Respiratorio/epidemiología , SARS-CoV-2 , Estados Unidos/epidemiología
7.
MMWR Morb Mortal Wkly Rep ; 71(40): 1265-1270, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36201400

RESUMEN

Increases in severe respiratory illness and acute flaccid myelitis (AFM) among children and adolescents resulting from enterovirus D68 (EV-D68) infections occurred biennially in the United States during 2014, 2016, and 2018, primarily in late summer and fall. Although EV-D68 annual trends are not fully understood, EV-D68 levels were lower than expected in 2020, potentially because of implementation of COVID-19 mitigation measures (e.g., wearing face masks, enhanced hand hygiene, and physical distancing) (1). In August 2022, clinicians in several geographic areas notified CDC of an increase in hospitalizations of pediatric patients with severe respiratory illness and positive rhinovirus/enterovirus (RV/EV) test results.* Surveillance data were analyzed from multiple national data sources to characterize reported trends in acute respiratory illness (ARI), asthma/reactive airway disease (RAD) exacerbations, and the percentage of positive RV/EV and EV-D68 test results during 2022 compared with previous years. These data demonstrated an increase in emergency department (ED) visits by children and adolescents with ARI and asthma/RAD in late summer 2022. The percentage of positive RV/EV test results in national laboratory-based surveillance and the percentage of positive EV-D68 test results in pediatric sentinel surveillance also increased during this time. Previous increases in EV-D68 respiratory illness have led to substantial resource demands in some hospitals and have also coincided with increases in cases of AFM (2), a rare but serious neurologic disease affecting the spinal cord. Therefore, clinicians should consider AFM in patients with acute flaccid limb weakness, especially after respiratory illness or fever, and ensure prompt hospitalization and referral to specialty care for such cases. Clinicians should also test for poliovirus infection in patients suspected of having AFM because of the clinical similarity to acute flaccid paralysis caused by poliovirus. Ongoing surveillance for EV-D68 is critical to ensuring preparedness for possible future increases in ARI and AFM.


Asunto(s)
Asma , COVID-19 , Enterovirus Humano D , Infecciones por Enterovirus , Mielitis , Infecciones del Sistema Respiratorio , Adolescente , Asma/epidemiología , Enfermedades Virales del Sistema Nervioso Central , Niño , Brotes de Enfermedades , Infecciones por Enterovirus/epidemiología , Humanos , Mielitis/epidemiología , Enfermedades Neuromusculares , Infecciones del Sistema Respiratorio/epidemiología , Rhinovirus , Estados Unidos/epidemiología
8.
MMWR Morb Mortal Wkly Rep ; 70(47): 1623-1628, 2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34818320

RESUMEN

Enterovirus D68 (EV-D68) is associated with a broad spectrum of illnesses, including mild to severe acute respiratory illness (ARI) and acute flaccid myelitis (AFM). Enteroviruses, including EV-D68, are typically detected in the United States during late summer through fall, with year-to-year fluctuations. Before 2014, EV-D68 was infrequently reported to CDC (1). However, numbers of EV-D68 detection have increased in recent years, with a biennial pattern observed during 2014-2018 in the United States, after the expansion of surveillance and wider availability of molecular testing. In 2014, a national outbreak of EV-D68 was detected (2). EV-D68 was also reported in 2016 via local (3) and passive national (4) surveillance. EV-D68 detections were limited in 2017, but substantial circulation was observed in 2018 (5). To assess recent levels of circulation, EV-D68 detections in respiratory specimens collected from patients aged <18 years* with ARI evaluated in emergency departments (EDs) or admitted to one of seven U.S. medical centers† within the New Vaccine Surveillance Network (NVSN) were summarized. This report provides a provisional description of EV-D68 detections during July-November in 2018, 2019 and 2020, and describes the demographic and clinical characteristics of these patients. In 2018, a total of 382 EV-D68 detections in respiratory specimens obtained from patients aged <18 years with ARI were reported by NVSN; the number decreased to six detections in 2019 and 30 in 2020. Among patients aged <18 years with EV-D68 in 2020, 22 (73%) were non-Hispanic Black (Black) persons. EV-D68 detections in 2020 were lower than anticipated based on the biennial circulation pattern observed since 2014. The circulation of EV-D68 in 2020 might have been limited by widespread COVID-19 mitigation measures; how these changes in behavior might influence the timing and levels of circulation in future years is unknown. Ongoing monitoring of EV-D68 detections is warranted for preparedness for EV-D68-associated ARI and AFM.


Asunto(s)
Brotes de Enfermedades , Enterovirus Humano D/aislamiento & purificación , Infecciones por Enterovirus/epidemiología , Vigilancia de la Población/métodos , Infecciones del Sistema Respiratorio/epidemiología , Infecciones del Sistema Respiratorio/virología , Adolescente , Niño , Preescolar , Enterovirus Humano D/genética , Infecciones por Enterovirus/virología , Femenino , Humanos , Lactante , Masculino , Estados Unidos/epidemiología
10.
MMWR Morb Mortal Wkly Rep ; 68(25): 568-572, 2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-31246941

RESUMEN

Cryptosporidium is a parasite that causes cryptosporidiosis, a profuse, watery diarrhea that can last up to 3 weeks in immunocompetent patients and can lead to life-threatening malnutrition and wasting in immunocompromised patients.* Fecal-oral transmission can occur by ingestion of contaminated recreational water, drinking water, or food, or through contact with infected persons or animals. For the period 2009-2017, public health officials from 40 states and Puerto Rico voluntarily reported 444 cryptosporidiosis outbreaks resulting in 7,465 cases. Exposure to treated recreational water (e.g., in pools and water playgrounds) was associated with 156 (35.1%) outbreaks resulting in 4,232 (56.7%) cases. Other predominant outbreak exposures included contact with cattle (65 outbreaks; 14.6%) and contact with infected persons in child care settings (57; 12.8%). The annual number of reported cryptosporidiosis outbreaks overall increased an average of approximately 13% per year over time. Reversing this trend will require dissemination of prevention messages to discourage swimming or attending child care while ill with diarrhea and encourage hand washing after contact with animals. Prevention and control measures can be optimized by improving understanding of Cryptosporidium transmission through regular analysis of systematically collected epidemiologic and molecular characterization data.


Asunto(s)
Criptosporidiosis/epidemiología , Brotes de Enfermedades/estadística & datos numéricos , Animales , Bovinos , Enfermedades de los Bovinos/microbiología , Guarderías Infantiles , Preescolar , Criptosporidiosis/transmisión , Cryptosporidium/aislamiento & purificación , Diarrea/microbiología , Humanos , Lactante , Piscinas , Estados Unidos/epidemiología , Microbiología del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA