RESUMEN
Midlife metabolic syndrome (MetS) is associated with cognitive impairment in late life. The mechanism of delayed MetS-related cognitive dysfunction (MetSCD) is not clear, but it has been linked to systemic inflammation and chronic cerebral microangiopathy. Currently there is no treatment for late life MetSCD other than early risk factor modification. We investigated the effect of soluble epoxide hydrolase (sEH) inhibitor 4-[[trans-4-[[(tricyclo[3.3.1.13,7]dec-1-ylamino)carbonyl]amino]cyclohexyl]oxy]-benzoic acid (t-AUCB) on cognitive performance, cerebral blood flow (CBF), and central and peripheral inflammation in the high-fat diet (HFD) model of MetS in mice. At 6 weeks of age, male mice were randomly assigned to receive either HFD or standard chow (STD) for 6 months. Mice received either t-AUCB or vehicle for 4 weeks. Cognitive performance was evaluated, followed by CBF measurement using magnetic resonance imaging (MRI). At the end of the study, blood was collected for measurement of eicosanoids and inflammatory cytokines. The brains were then analyzed by immunohistochemistry for glial activation markers. The HFD caused a significant impairment in novel object recognition. Treatment with t-AUCB increased plasma levels of 14,15-EET, prevented this cognitive impairment and modified hippocampal glial activation and plasma cytokine levels, without affecting CBF in mice on HFD. In conclusion, sEH inhibition for four weeks prevents cognitive deficits in mice on chronic HFD by modulating inflammatory processes without affecting CBF.
Asunto(s)
Disfunción Cognitiva , Modelos Animales de Enfermedad , Epóxido Hidrolasas , Inflamación , Síndrome Metabólico , Animales , Masculino , Ratones , Benzoatos/farmacología , Benzoatos/uso terapéutico , Circulación Cerebrovascular/efectos de los fármacos , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/etiología , Disfunción Cognitiva/patología , Disfunción Cognitiva/metabolismo , Dieta Alta en Grasa/efectos adversos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Epóxido Hidrolasas/antagonistas & inhibidores , Epóxido Hidrolasas/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/patología , Síndrome Metabólico/tratamiento farmacológico , Síndrome Metabólico/complicaciones , Síndrome Metabólico/patología , Ratones Endogámicos C57BLRESUMEN
Heterozygous carriers of the glucocerebrosidase 1 (GBA) L444P Gaucher mutation have an increased risk of developing Parkinson's disease (PD). The GBA mutations result in elevated alpha synuclein (aSyn) levels. Heterozygous mice carrying one allele with the L444P mutation knocked-into the mouse gene show increased aSyn levels and are more sensitive to motor deficits following exposure to the neurotoxin (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) MPTP than wild-type mice. Paraquat (PQ), a herbicide, increases PD risk in most studies. Its effects on the brain involve alterations in the gut microbiome. Exposure to dextran sulfate sodium (DSS), a mouse model of colitis, can be used to determine whether gut microbiome alterations are sufficient to induce PD-relevant phenotypes. We rederived the A53T-L444P and A53T mouse lines to assess whether PQ, PQ in combination with radiation exposure (IR), and DSS have differential effects in A53T and A53T-L444P mice and whether these effects are associated with alterations in the gut microbiome. PQ and PQ + IR have differential effects in A53T and A53T-L444P mice. In contrast, effects of DSS are only seen in A53T-L444P mice. Exposure and genotype modulate the relationship between the gut microbiome and behavioral performance. The gut microbiome may be an important mediator of how environmental exposures or genetic mutations yield behavioral and cognitive impacts.
Asunto(s)
Microbioma Gastrointestinal , Enfermedad de Parkinson , Ratones , Animales , Paraquat/toxicidad , Sulfato de Dextran , Enfermedad de Parkinson/genética , Glucosilceramidasa/genética , CogniciónRESUMEN
Vascular cognitive impairment (VCI) is the second most common cause of dementia. There is no treatment for VCI, in part due to a lack of understanding of the underlying mechanisms. The G-protein coupled receptor 39 (GPR39) is regulated by arachidonic acid (AA)-derived oxylipins that have been implicated in VCI. Furthermore, GPR39 is increased in microglia of post mortem human brains with VCI. Carriers of homozygous GPR39 SNPs have a higher burden of white matter hyperintensity, an MRI marker of VCI. We tested the hypothesis that GPR39 plays a protective role against high-fat diet (HFD)-induced cognitive impairment, in part mediated via oxylipins actions on cerebral blood flow (CBF) and neuroinflammation. Homozygous (KO) and heterozygous (Het) GPR39 knockout mice and wild-type (WT) littermates with and without HFD for 8 months were tested for cognitive performance using the novel object recognition (NOR) and the Morris water maze (MWM) tests, followed by CBF measurements using MRI. Brain tissue and plasma oxylipins were quantified with high-performance liquid chromatography coupled to mass spectrometry. Cytokines and chemokines were measured using a multiplex assay. KO mice, regardless of diet, swam further away from platform location in the MWM compared to WT and Het mice. In the NOR test, there were no effects of genotype or diet. Brain and plasma AA-derived oxylipins formed by 11- and 15-lipoxygenase (LOX), cyclooxygenase (COX) and non-enzymatically were increased by HFD and GPR39 deletion. Interleukin-10 (IL-10) was lower in KO mice on HFD than standard diet (STD), whereas IL-4, interferon γ-induced protein-10 (IP-10) and monocyte chemotactic protein-3 (MCP-3) were altered by diet in both WT and KO, but were not affected by genotype. Resting CBF was reduced in WT and KO mice on HFD, with no change in vasoreactivity. The deletion of GPR39 did not change CBF compared to WT mice on either STD or HFD. We conclude that GPR39 plays a role in spatial memory retention and protects against HFD-induced cognitive impairment in part by modulating inflammation and AA-derived oxylipins. The results indicate that GPR39 and oxylipin pathways play a role and may serve as therapeutic targets in VCI.
RESUMEN
BACKGROUND: Tyrosinemia type 1 (HT1) is a rare metabolic disorder caused by a defect in the tyrosine catabolic pathway. Since HT1 patients are treated with NTBC, outcome improved and life expectancy greatly increased. However extensive neurocognitive and behavioural problems have been described, which might be related to treatment with NTBC, the biochemical changes induced by NTBC, or metabolites accumulating due to the enzymatic defect characterizing the disease. OBJECTIVE: To study the possible pathophysiological mechanisms of brain dysfunction in HT1, we assessed blood and brain LNAA, and brain monoamine neurotransmitter metabolite levels in relation to behavioural and cognitive performance of HT1 mice. DESIGN: C57BL/6 littermates were divided in three different experimental groups: HT1, heterozygous and wild-type mice (n = 10; 5 male). All groups were treated with NTBC and underwent cognitive and behavioural testing. One week after behavioural testing, blood and brain material were collected to measure amino acid profiles and brain monoaminergic neurotransmitter levels. RESULTS: Irrespective of the genetic background, NTBC treatment resulted in a clear increase in brain tyrosine levels, whereas all other brain LNAA levels tended to be lower than their reference values. Despite these changes in blood and brain biochemistry, no significant differences in brain monoamine neurotransmitter (metabolites) were found and all mice showed normal behaviour and learning and memory. CONCLUSION: Despite the biochemical changes, NTBC and genotype of the mice were not associated with poorer behavioural and cognitive function of the mice. Further research involving dietary treatment of FAH-/- are warranted to investigate whether this reveals the cognitive impairments that have been seen in treated HT1 patients.
Asunto(s)
Nitrobenzoatos , Tirosinemias , Animales , Ratones , Masculino , Ciclohexanonas , Ratones Endogámicos C57BL , Tirosinemias/tratamiento farmacológico , Tirosinemias/genética , Tirosina/metabolismoRESUMEN
The deep space environment contains many risks to astronauts during space missions, such as galactic cosmic rays (GCRs) comprised of naturally occurring heavy ions. Heavy ion radiation is increasingly being used in cancer therapy, including novel regimens involving carbon therapy. Previous investigations involving simulated space radiation have indicated a host of detrimental cognitive and behavioral effects. Therefore, there is an increasing need to counteract these deleterious effects of heavy ion radiation. Here, we assessed the ability of amifostine to mitigate cognitive injury induced by simulated GCRs in C57Bl/6J male and female mice. Six-month-old mice received an intraperitoneal injection of saline, 107 mg/kg, or 214 mg/kg of amifostine 1 h prior to exposure to a simplified five-ion radiation (protons, 28Si, 4He, 16O, and 56Fe) at 500 mGy or sham radiation. Mice were behaviorally tested 2-3 months later. Male mice that received saline and radiation exposure failed to show novel object recognition, which was reversed by both doses of amifostine. Conversely, female mice that received saline and radiation exposure displayed intact object recognition, but those that received amifostine prior to radiation did not. Amifostine and radiation also had distinct effects on males and females in the open field, with amifostine affecting distance moved over time in both sexes, and radiation affecting time spent in the center in females only. Whole-brain analysis of cFos immunoreactivity in male mice indicated that amifostine and radiation altered regional connectivity in areas involved in novel object recognition. These data support that amifostine has potential as a countermeasure against cognitive injury following proton and heavy ion irradiation in males.
RESUMEN
In the brain, apolipoprotein E (apoE) plays an important role in lipid transport and response to environmental and age-related challenges, including neuronal repair following injury. While much has been learned from radiation studies in rodents, a gap in our knowledge is how radiation might affect the brain in primates. This is important for assessing risk to the brain following radiotherapy as part of cancer treatment or environmental radiation exposure as part of a nuclear accident, bioterrorism, or a nuclear attack. In this study, we investigated the effects of ionizing radiation on brain volumes and apoE levels in the prefrontal cortex, amygdala, and hippocampus of Rhesus macaques that were part of the Nonhuman Primate Radiation Survivor Cohort at the Wake Forest University. This unique cohort is composed of Rhesus macaques that had previously received single total body doses of 6.5-8.05 Gy of ionizing radiation. Regional apoE levels predicted regional volume in the amygdala and the prefrontal cortex. In addition, apoE levels in the amygdala, but not the hippocampus, strongly predicted relative hippocampal volume. Finally, radiation dose negatively affected relative hippocampal volume when apoE levels in the amygdala were controlled for, suggesting a protective compensatory role of regional apoE levels following radiation exposure. In a supplementary analysis, there also was a robust positive relationship between the neuroprotective protein α-klotho and apoE levels in the amygdala, further supporting the potentially protective role of apoE. Increased understanding of the effects of IR in the primate brain and the role of apoE in the irradiated brain could inform future therapies to mitigate the adverse effects of IR on the CNS.
Asunto(s)
Amígdala del Cerebelo/metabolismo , Apolipoproteínas E/metabolismo , Encéfalo/metabolismo , Corteza Prefrontal/metabolismo , Animales , Femenino , Proteínas Klotho/metabolismo , Macaca mulatta , Masculino , Neuronas/metabolismoRESUMEN
A limitation of simulated space radiation studies is that radiation exposure is not the only environmental challenge astronauts face during missions. Therefore, we characterized behavioral and cognitive performance of male WAG/Rij rats 3 months after sham-irradiation or total body irradiation with a simplified 5-ion mixed beam exposure in the absence or presence of simulated weightlessness using hindlimb unloading (HU) alone. Six months following behavioral and cognitive testing or 9 months following sham-irradiation or total body irradiation, plasma and brain tissues (hippocampus and cortex) were processed to determine whether the behavioral and cognitive effects were associated with long-term alterations in metabolic pathways in plasma and brain. Sham HU, but not irradiated HU, rats were impaired in spatial habituation learning. Rats irradiated with 1.5 Gy showed increased depressive-like behaviors. This was seen in the absence but not presence of HU. Thus, HU has differential effects in sham-irradiated and irradiated animals and specific behavioral measures are associated with plasma levels of distinct metabolites 6 months later. The combined effects of HU and radiation on metabolic pathways in plasma and brain illustrate the complex interaction of environmental stressors and highlights the importance of assessing these interactions.
RESUMEN
The space radiation environment consists of multiple species of charged particles, including 28Si ions, that may impact brain function during and following missions. To develop biomarkers of the space radiation response, BALB/c and C3H female and male mice and their F2 hybrid progeny were irradiated with 28Si ions (350 MeV/n, 0.2 Gy) and tested for behavioral and cognitive performance 1, 6, and 12 months following irradiation. The plasma of the mice was collected for analysis of miRNA levels. Select pertinent brain regions were dissected for lipidomic analyses and analyses of levels of select biomarkers shown to be sensitive to effects of space radiation in previous studies. There were associations between lipids in select brain regions, plasma miRNA, and cognitive measures and behavioral following 28Si ion irradiation. Different but overlapping sets of miRNAs in plasma were found to be associated with cognitive measures and behavioral in sham and irradiated mice at the three time points. The radiation condition revealed pathways involved in neurodegenerative conditions and cancers. Levels of the dendritic marker MAP2 in the cortex were higher in irradiated than sham-irradiated mice at middle age, which might be part of a compensatory response. Relationships were also revealed with CD68 in miRNAs in an anatomical distinct fashion, suggesting that distinct miRNAs modulate neuroinflammation in different brain regions. The associations between lipids in selected brain regions, plasma miRNA, and behavioral and cognitive measures following 28Si ion irradiation could be used for the development of biomarker of the space radiation response.
Asunto(s)
Conducta Animal/efectos de la radiación , Encéfalo/metabolismo , Cognición/efectos de la radiación , Metabolismo de los Lípidos/efectos de la radiación , MicroARNs/sangre , Silicio/efectos adversos , Irradiación Corporal Total/efectos adversos , Animales , Radiación Cósmica/efectos adversos , Relación Dosis-Respuesta en la Radiación , Femenino , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Radiación IonizanteRESUMEN
BACKGROUND: Exposure to secondhand smoke (SHS) is a risk factor for developing sporadic forms of sporadic dementia. A human tau (htau) mouse model is available that exhibits age-dependent tau dysregulation, neurofibrillary tangles, neuronal loss, neuroinflammation, and oxidative stress starting at an early age (3-4 months) and in which tau dysregulation and neuronal loss correlate with synaptic dysfunction and cognitive decline. OBJECTIVE: The goal of this study was to assess the effects of chronic SHS exposure (10 months' exposure to â¼30 mg/m3) on behavioral and cognitive function, metabolism, and neuropathology in mice. METHODS: Wild-type (WT) and htau female and male mice were exposed to SHS (90% side stream, 10% main stream) using the SCIREQ® inExpose™ system or air control for 168 min per day, for 312 d, 7 d per week. The exposures continued during the days of behavioral and cognitive testing. In addition to behavioral and cognitive performance and neuropathology, the lungs of mice were examined for pathology and alterations in gene expression. RESULTS: Mice exposed to chronic SHS exposure showed the following genotype-dependent responses: a) lower body weights in WT, but not htau, mice; b) less spontaneous alternation in WT, but not htau, mice in the Y maze; c) faster swim speeds of WT, but not htau, mice in the water maze; d) lower activity levels of WT and htau mice in the open field; e) lower expression of brain PHF1, TTCM1, IGF1ß, and HSP90 protein levels in WT male, but not female, mice; and f) more profound effects on hippocampal metabolic pathways in WT male than female mice and more profound effects in WT than htau mice. DISCUSSION: The brain of WT mice, in particular WT male mice, might be especially susceptible to the effects of chronic SHS exposure. In WT males, independent pathways involving ascorbate, flavin adenine dinucleotide, or palmitoleic acid might contribute to the hippocampal injury following chronic SHS exposure. https://doi.org/10.1289/EHP8428.
Asunto(s)
Exposición a Riesgos Ambientales , Hipocampo , Contaminación por Humo de Tabaco , Animales , Cognición , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/estadística & datos numéricos , Femenino , Hipocampo/metabolismo , Humanos , Masculino , Redes y Vías Metabólicas , Ratones , Tauopatías , Contaminación por Humo de Tabaco/efectos adversos , Contaminación por Humo de Tabaco/estadística & datos numéricos , Proteínas tauRESUMEN
During space missions, astronauts experience acute and chronic low-dose-rate radiation exposures. Given the clear gap of knowledge regarding such exposures, we assessed the effects acute and chronic exposure to a mixed field of neutrons and photons and single or fractionated simulated galactic cosmic ray exposure (GCRsim) on behavioral and cognitive performance in mice. In addition, we assessed the effects of an aspirin-containing diet in the presence and absence of chronic exposure to a mixed field of neutrons and photons. In C3H male mice, there were effects of acute radiation exposure on activity levels in the open field containing objects. In addition, there were radiation-aspirin interactions for effects of chronic radiation exposure on activity levels and measures of anxiety in the open field, and on activity levels in the open field containing objects. There were also detrimental effects of aspirin and chronic radiation exposure on the ability of mice to distinguish the familiar and novel object. Finally, there were effects of acute GCRsim on activity levels in the open field containing objects. Activity levels were lower in GCRsim than sham-irradiated mice. Thus, acute and chronic irradiation to a mixture of neutrons and photons and acute and fractionated GCRsim have differential effects on behavioral and cognitive performance of C3H mice. Within the limitations of our study design, aspirin does not appear to be a suitable countermeasure for effects of chronic exposure to space radiation on cognitive performance.
Asunto(s)
Conducta Animal/efectos de la radiación , Cognición/efectos de la radiación , Radiación Cósmica , Neutrones , Fotones , Animales , Aspirina/administración & dosificación , Condicionamiento Clásico , Miedo , Femenino , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C3HRESUMEN
To simulate the space radiation environment astronauts are exposed to, most studies involve acute exposures but during a space mission there will be chronic (long-lasting) exposures. To address this knowledge gap, a neutron irradiator using a 252Cf (252Californium) source was used to generate a mixed field of neutrons and photons to simulate chronic, low dose rate exposures to high LET radiation. In the present study, we assessed the effects chronic neutron exposure starting at 60 days of age on behavioral and cognitive performance of BALB/c female and C3H male mice at 600 and 700 days of age as part of an opportunistic study that took advantage of the availability of neutron and sham-irradiated mice from a radiation carcinogenesis experiment. There were profound dose- and time point-dependent effects of chronic neutron exposure. At the 600-day time point, irradiated BALB/c female mice showed improved nest building at all three doses. At the 700-day, but not 600-day, time point slightly but significantly increased body weights were seen in C3H male mice exposed to 0.118â¯Gy. At the 600-day time point BALB/c female mice irradiated with 0.2â¯Gy did, like sham-irradiated, not show preferential exploration of the novel object that was seen in mice irradiated with 0.118 or 0.4â¯Gy. In C3H male mice exposed to 0.4â¯Gy and at the 600-day time point, increased measures of anxiety were observed on days 1 and 2 in the open field. Thus, different outcome measures show distinct dose-response relationships, with some anticipated to worsen performance during space missions, like increased measures of anxiety, while other anticipated to enhance performance, such as increased nest building and object recognition.