Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Molecules ; 26(9)2021 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-34066776

RESUMEN

The aim of this work was to monitor the quality, antioxidant capacity and digestibility of chickpea exposed to different modified atmospheres. Chickpea quality (proximal analysis, color, texture, and water absorption) and the antioxidant capacity of free, conjugated, and bound phenol fractions obtained from raw and cooked chickpea, were determined. Cooked chickpea was exposed to N2 and CO2 atmospheres for 0, 25, and 50 days, and the antioxidant capacity was analyzed by DPPH (2,2'-diphenyl-1-picrylhydrazyl), ABTS (2,2'-azino-bis-[3ethylbenzothiazoline-6-sulfonic acid]), and total phenols. After in vitro digestion, the antioxidant capacity was measured by DPPH, ABTS, FRAP (ferric reducing antioxidant power), and AAPH (2,2'-Azobis [2-methylpropionamidine]). Additionally, quantification of total phenols, and UPLC-MS profile were determined. The results indicated that this grain contain high quality and high protein (18.38%). Bound phenolic compounds showed the highest amount (105.6 mg GAE/100 g) and the highest antioxidant capacity in all techniques. Cooked chickpeas maintained their quality and antioxidant capacity during 50 days of storage at 4 and -20 °C under a nitrogen atmosphere. Free and conjugated phenolic compounds could be hydrolyzed by digestive enzymes, increasing their bioaccessibility and their antioxidant capacity during each step of digestion. The majority compound in all samples was enterodiol, prevailing the flavonoid type in the rest of the identified compounds. Chickpea contains biological interest compounds with antioxidant potential suggesting that this legume can be exploited for various technologies.


Asunto(s)
Antioxidantes/química , Atmósfera/química , Dióxido de Carbono , Cicer/química , Grano Comestible/química , Nitrógeno , Cromatografía Liquida , Digestión , Flavonoides/química , Lignanos/química , Espectrometría de Masas , Fenoles/química , Proteínas de Plantas/química
2.
Saudi J Biol Sci ; 28(2): 1401-1416, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33613070

RESUMEN

Navicula incerta is a marine microalga distributed in Baja California, México, commonly used in aquaculture nutrition, and has been extended to human food, biomedical, and pharmaceutical industries due to its high biological activity. Therefore, the study aimed to optimize culture conditions to produce antioxidant pigments. A central composite experimental design and response surface methodology (RSM) was employed to analyze the best culture conditions. The medium (nitrogen-deficient concentrations), salinity (PSU = Practical Salinity Unity [g/kg]), age of culture (days), and solvent extraction (ethanol, methanol, and acetone) were the factors used for the experiment. Chlorophyll a (Chl a) and total carotenoids (T-Car), determined spectroscopically, were used as the response variables. The antioxidant capacity was evaluated by DPPH• and ABTS•+ radical inhibition, FRAP, and anti-hemolytic activity. According to the overlay plots, the optimum growth conditions for Chl a and T-Car production were the following conditions: medium = 0.44 mol·L-1 of NaNO3, salinity = 40 PSU, age of culture: 3.5 days, and solvent = methanol. The pigment extracts obtained in these optimized conditions had high antioxidant activity in ABTS•+ (86.2-92.1% of inhibition) and anti-hemolytic activity (81.8-96.7% of hemolysis inhibition). Low inhibition (33-35%) was observed in DPPH•. The highest value of FRAP (766.03 ± 16.62 µmol TE/g) was observed in the acetonic extract. The results demonstrated that RSM could obtain an extract with high antioxidant capacity with potential applications in the biomedical and pharmaceutical industry, which encourages the use of natural resources for chemoprevention of chronic-degenerative pathologies.

3.
Curr Protein Pept Sci ; 20(12): 1204-1217, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31208309

RESUMEN

Legume proteins are precursors of bioactive components, such as peptides. In the present paper, different types of legume as sources of bioactive peptides and hydrolysates are considered and discussed based on their anti-inflammatory effect. Peptides with anti-inflammatory activity were included from in vitro and in vivo studies. Current strategies for obtaining bioactive peptides, as well as their structure and impact on health, were also reviewed. It was discovered that peptides derived from legume protein, mainly soybean and bean, can regulate several inflammatory markers, which include prostaglandin E2 (PGE2), nitric oxide (NO), inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX- 2), cytokines, and chemokines. So far, lunasin, VPY and γ-glutamyl peptides have been identified with anti-inflammatory activity but their mechanisms have not been fully elucidated. Furthermore, it is necessary to gather more information about hydrolysates containing peptides and single peptides with antiinflammatory activity. Considering the wide diversity, legume may be promising components to produce peptides efficient to ameliorate inflammatory disorders.


Asunto(s)
Antiinflamatorios no Esteroideos/química , Fabaceae/química , Péptidos/química , Extractos Vegetales/química , Proteínas de Plantas/química , Antiinflamatorios no Esteroideos/farmacología , Quimiocinas/metabolismo , Ciclooxigenasa 2/metabolismo , Citocinas/metabolismo , Dinoprostona/metabolismo , Descubrimiento de Drogas/métodos , Humanos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Péptidos/farmacología , Extractos Vegetales/farmacología , Proteínas de Plantas/farmacología , Conformación Proteica , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA