Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 130(17): 173202, 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37172235

RESUMEN

We report on the first demonstration of transport of a multispecies ion crystal through a junction in a rf Paul trap. The trap is a two-dimensional surface-electrode trap with an X junction and segmented control electrodes to which time-varying voltages are applied to control the shape and position of potential wells above the trap surface. We transport either a single ^{171}Yb^{+} ion or a crystal composed of a ^{138}Ba^{+} ion cotrapped with the ^{171}Yb^{+} ion to any port of the junction. We characterize the motional excitation by performing multiple round-trips through the junction and back to the initial well position without cooling. The final excitation is then measured using sideband asymmetry. For a single ^{171}Yb^{+} ion, transport with a 4 m/s average speed induces between 0.013±0.001 and 0.014±0.001 quanta of excitation per round-trip, depending on the exit port. For a Ba-Yb crystal, transport at the same speed induces between 0.013±0.001 and 0.030±0.002 quanta per round-trip of excitation to the in-phase axial mode. Excitation in the out-of-phase axial mode ranges from 0.005±0.001 to 0.021±0.001 quanta per round-trip.

2.
Science ; 360(6396): 1429-1434, 2018 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-29954972

RESUMEN

Topological order is often quantified in terms of Chern numbers, each of which classifies a topological singularity. Here, inspired by concepts from high-energy physics, we use quantum simulation based on the spin degrees of freedom of atomic Bose-Einstein condensates to characterize a singularity present in five-dimensional non-Abelian gauge theories-a Yang monopole. We quantify the monopole in terms of Chern numbers measured on enclosing manifolds: Whereas the well-known first Chern number vanishes, the second Chern number does not. By displacing the manifold, we induce and observe a topological transition, where the topology of the manifold changes to a trivial state.

3.
Proc Natl Acad Sci U S A ; 109(27): 10811-4, 2012 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-22699494

RESUMEN

Measurement techniques based upon the Hall effect are invaluable tools in condensed-matter physics. When an electric current flows perpendicular to a magnetic field, a Hall voltage develops in the direction transverse to both the current and the field. In semiconductors, this behavior is routinely used to measure the density and charge of the current carriers (electrons in conduction bands or holes in valence bands)--internal properties of the system that are not accessible from measurements of the conventional resistance. For strongly interacting electron systems, whose behavior can be very different from the free electron gas, the Hall effect's sensitivity to internal properties makes it a powerful tool; indeed, the quantum Hall effects are named after the tool by which they are most distinctly measured instead of the physics from which the phenomena originate. Here we report the first observation of a Hall effect in an ultracold gas of neutral atoms, revealed by measuring a Bose-Einstein condensate's transport properties perpendicular to a synthetic magnetic field. Our observations in this vortex-free superfluid are in good agreement with hydrodynamic predictions, demonstrating that the system's global irrotationality influences this superfluid Hall signal.


Asunto(s)
Frío , Magnetismo/métodos , Teoría Cuántica , Semiconductores , Conductividad Eléctrica , Electrones , Estudios de Evaluación como Asunto , Hidrodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA