Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Cheminform ; 16(1): 90, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090756

RESUMEN

Here, we present a new method for evaluating questions on chemical reactions in the context of remote education. This method can be used when binary grading is not sufficient as some tolerance may be acceptable. In order to determine a grade, the developed workflow uses the pairwise similarity assessment of two considered reactions, each encoded by a single molecular graph with the help of the Condensed Graph of Reaction (CGR) approach. This workflow is part of the ChemMoodle project and is implemented as a Moodle Plugin. It uses the Chemdoodle engine for reaction drawing and visualization and communicates with a REST server calculating the similarity score using ISIDA fragment descriptors. The plugin is open-source, accessible in GitHub ( https://github.com/Laboratoire-de-Chemoinformatique/moodle-qtype_reacsimilarity ) and on the Moodle plugin store ( https://moodle.org/plugins/qtype_reacsimilarity?lang=en ). Both similarity measures and fragmentation can be configured.Scientific contribution This work introduces an open-source method for evaluating chemical reaction questions within Moodle using the CGR approach. Our contribution provides a nuanced grading mechanism that accommodates acceptable tolerances in reaction assessments, enhancing the accuracy and flexibility of the grading process.

2.
J Cheminform ; 14(1): 72, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36284337

RESUMEN

We report a novel approach for grading chemical structure drawings for remote teaching, integrated into the Moodle platform. Typically, existing online platforms use a binary grading system, which often fails to give a nuanced evaluation of the answers given by the students. Therefore, such platforms are unevenly adapted to different disciplines. This is particularly true in the case of chemical structures, where most questions simply cannot be evaluated on a true/false basis. Specifically, a strict comparison of candidate and expected chemical structures is not sufficient when some tolerance is deemed acceptable. To overcome this limitation, we have developed a grading workflow based on the pairwise similarity score of two considered chemical structures. This workflow is implemented as a Moodle plugin, using the Chemdoodle engine for drawing structures and communicating with a REST server to compute the similarity score using molecular descriptors. The plugin ( https://github.com/Laboratoire-de-Chemoinformatique/moodle-qtype_molsimilarity ) is easily adaptable to any academic user; both embedding and similarity measures can be configured.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA