Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
JCI Insight ; 8(17)2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37561591

RESUMEN

Pediatric cardiomyopathy (CM) represents a group of rare, severe disorders that affect the myocardium. To date, the etiology and mechanisms underlying pediatric CM are incompletely understood, hampering accurate diagnosis and individualized therapy development. Here, we identified biallelic variants in the highly conserved flightless-I (FLII) gene in 3 families with idiopathic, early-onset dilated CM. We demonstrated that patient-specific FLII variants, when brought into the zebrafish genome using CRISPR/Cas9 genome editing, resulted in the manifestation of key aspects of morphological and functional abnormalities of the heart, as observed in our patients. Importantly, using these genetic animal models, complemented with in-depth loss-of-function studies, we provided insights into the function of Flii during ventricular chamber morphogenesis in vivo, including myofibril organization and cardiomyocyte cell adhesion, as well as trabeculation. In addition, we identified Flii function to be important for the regulation of Notch and Hippo signaling, crucial pathways associated with cardiac morphogenesis and function. Taken together, our data provide experimental evidence for a role for FLII in the pathogenesis of pediatric CM and report biallelic variants as a genetic cause of pediatric CM.


Asunto(s)
Cardiomiopatías , Proteínas de Microfilamentos , Animales , Adhesión Celular/genética , Proteínas de Microfilamentos/genética , Miocitos Cardíacos/metabolismo , Miofibrillas/metabolismo , Pez Cebra/genética , Transactivadores , Cardiomiopatías/genética
2.
J Cell Biol ; 216(1): 199-215, 2017 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-28007914

RESUMEN

Semaphorins comprise a large family of ligands that regulate key cellular functions through their receptors, plexins. In this study, we show that the transmembrane semaphorin 4A (Sema4A) can also function as a receptor, rather than a ligand, and transduce signals triggered by the binding of Plexin-B1 through reverse signaling. Functionally, reverse Sema4A signaling regulates the migration of various cancer cells as well as dendritic cells. By combining mass spectrometry analysis with small interfering RNA screening, we identify the polarity protein Scrib as a downstream effector of Sema4A. We further show that binding of Plexin-B1 to Sema4A promotes the interaction of Sema4A with Scrib, thereby removing Scrib from its complex with the Rac/Cdc42 exchange factor ßPIX and decreasing the activity of the small guanosine triphosphatase Rac1 and Cdc42. Our data unravel a role for Plexin-B1 as a ligand and Sema4A as a receptor and characterize a reverse signaling pathway downstream of Sema4A, which controls cell migration.


Asunto(s)
Movimiento Celular , Células Dendríticas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Neoplasias/metabolismo , Semaforinas/metabolismo , Transducción de Señal , Proteínas Supresoras de Tumor/metabolismo , Animales , Genotipo , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Espectrometría de Masas , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Invasividad Neoplásica , Neoplasias/genética , Neoplasias/patología , Proteínas del Tejido Nervioso/metabolismo , Fenotipo , Interferencia de ARN , Receptores de Superficie Celular/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Semaforinas/deficiencia , Semaforinas/genética , Factores de Tiempo , Transfección , Proteínas Supresoras de Tumor/genética , Proteína de Unión al GTP cdc42/metabolismo , Proteínas de Unión al GTP rac/metabolismo
3.
Development ; 143(12): 2217-27, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27302398

RESUMEN

During cardiac valve development, the single-layered endocardial sheet at the atrioventricular canal (AVC) is remodeled into multilayered immature valve leaflets. Most of our knowledge about this process comes from examining fixed samples that do not allow a real-time appreciation of the intricacies of valve formation. Here, we exploit non-invasive in vivo imaging techniques to identify the dynamic cell behaviors that lead to the formation of the immature valve leaflets. We find that in zebrafish, the valve leaflets consist of two sets of endocardial cells at the luminal and abluminal side, which we refer to as luminal cells (LCs) and abluminal cells (ALCs), respectively. By analyzing cellular rearrangements during valve formation, we observed that the LCs and ALCs originate from the atrium and ventricle, respectively. Furthermore, we utilized Wnt/ß-catenin and Notch signaling reporter lines to distinguish between the LCs and ALCs, and also found that cardiac contractility and/or blood flow is necessary for the endocardial expression of these signaling reporters. Thus, our 3D analyses of cardiac valve formation in zebrafish provide fundamental insights into the cellular rearrangements underlying this process.


Asunto(s)
Válvulas Cardíacas/citología , Válvulas Cardíacas/embriología , Imagenología Tridimensional , Animales , Movimiento Celular , Circulación Coronaria , Endocardio/citología , Endocardio/embriología , Regulación del Desarrollo de la Expresión Génica , Atrios Cardíacos/citología , Atrios Cardíacos/embriología , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/embriología , Mutación/genética , Contracción Miocárdica , Organogénesis/genética , Receptores Notch/metabolismo , Vía de Señalización Wnt , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA