Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Int J Mol Sci ; 23(10)2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35628401

RESUMEN

Paired box 9 (PAX9) is a transcription factor of the PAX family functioning as both a transcriptional activator and repressor. Its functional roles in the embryonic development of various tissues and organs have been well studied. However, its roles and molecular mechanisms in cancer development are largely unknown. Here, we review the current understanding of PAX9 expression, upstream regulation of PAX9, and PAX9 downstream events in cancer development. Promoter hypermethylation, promoter SNP, microRNA, and inhibition of upstream pathways (e.g., NOTCH) result in PAX9 silencing or downregulation, whereas gene amplification and an epigenetic axis upregulate PAX9 expression. PAX9 may contribute to carcinogenesis through dysregulation of its transcriptional targets and related molecular pathways. In summary, extensive studies on PAX9 in its cellular and tissue contexts are warranted in various cancers, in particular, HNSCC, ESCC, lung cancer, and cervical SCC.


Asunto(s)
Neoplasias de Cabeza y Cuello , Factor de Transcripción PAX9 , Neoplasias de Cabeza y Cuello/genética , Humanos , Factor de Transcripción PAX9/genética , Factor de Transcripción PAX9/metabolismo , Regiones Promotoras Genéticas , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Factores de Transcripción/metabolismo
2.
BMC Dev Biol ; 21(1): 14, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34615475

RESUMEN

BACKGROUND: Successful embryogenesis relies on the coordinated interaction between genes and tissues. The transcription factors Pax9 and Msx1 genetically interact during mouse craniofacial morphogenesis, and mice deficient for either gene display abnormal tooth and palate development. Pax9 is expressed specifically in the pharyngeal endoderm at mid-embryogenesis, and mice deficient for Pax9 on a C57Bl/6 genetic background also have cardiovascular defects affecting the outflow tract and aortic arch arteries giving double-outlet right ventricle, absent common carotid arteries and interruption of the aortic arch. RESULTS: In this study we have investigated both the effect of a different genetic background and Msx1 haploinsufficiency on the presentation of the Pax9-deficient cardiovascular phenotype. Compared to mice on a C57Bl/6 background, congenic CD1-Pax9-/- mice displayed a significantly reduced incidence of outflow tract defects but aortic arch defects were unchanged. Pax9-/- mice with Msx1 haploinsufficiency, however, have a reduced incidence of interrupted aortic arch, but more cases with cervical origins of the right subclavian artery and aortic arch, than seen in Pax9-/- mice. This alteration in arch artery defects was accompanied by a rescue in third pharyngeal arch neural crest cell migration and smooth muscle cell coverage of the third pharyngeal arch arteries. Although this change in phenotype could theoretically be compatible with post-natal survival, using tissue-specific inactivation of Pax9 to maintain correct palate development whilst inducing the cardiovascular defects was unable to prevent postnatal death in the mutant mice. Hyoid bone and thyroid cartilage formation were abnormal in Pax9-/- mice. CONCLUSIONS: Msx1 haploinsufficiency mitigates the arch artery defects in Pax9-/- mice, potentially by maintaining the survival of the 3rd arch artery through unimpaired migration of neural crest cells to the third pharyngeal arches. With the neural crest cell derived hyoid bone and thyroid cartilage also being defective in Pax9-/- mice, we speculate that the pharyngeal endoderm is a key signalling centre that impacts on neural crest cell behaviour highlighting the ability of cells in different tissues to act synergistically or antagonistically during embryo development.


Asunto(s)
Sistema Cardiovascular , Haploinsuficiencia , Factor de Transcripción MSX1 , Animales , Región Branquial , Factor de Transcripción MSX1/genética , Ratones , Ratones Noqueados , Cresta Neural , Factor de Transcripción PAX9 , Fenotipo
3.
Cleft Palate Craniofac J ; 58(6): 697-706, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34047208

RESUMEN

OBJECTIVE: Cleft palate is among the most frequent congenital defects in humans. While gene-environment multifactorial threshold models have been proposed to explain this cleft palate formation, only a few experimental models have verified this theory. This study aimed to clarify whether gene-environment interaction can cause cleft palate through a combination of specific genetic and environmental factors. METHODS: Msx1 heterozygosity in mice (Msx1+/-) was selected as a genetic factor since human MSX1 gene mutations may cause nonsyndromic cleft palate. As an environmental factor, hypoxic stress was induced in pregnant mice by administration of the antiepileptic drug phenytoin, a known arrhythmia inducer, during palatal development from embryonic day (E) 11 to E14. Embryos were dissected at E13 for histological analysis or at E17 for recording of the palatal state. RESULTS: Phenytoin administration downregulated cell proliferation in palatal processes in both wild-type and Msx1+/- embryos. Bone morphogenetic protein 4 (Bmp4) expression was slightly downregulated in the anterior palatal process of Msx1+/- embryos. Although Msx1+/- embryos do not show cleft palate under normal conditions, phenytoin administration induced a significantly higher incidence of cleft palate in Msx1+/- embryos compared to wild-type littermates. CONCLUSION: Our data suggest that cleft palate may occur because of the additive effects of Bmp4 downregulation as a result of Msx1 heterozygosity and decreased cell proliferation upon hypoxic stress. Human carriers of MSX1 mutations may have to take more precautions during pregnancy to avoid exposure to environmental risks.


Asunto(s)
Fisura del Paladar , Factor de Transcripción MSX1 , Estrés Oxidativo , Animales , Fisura del Paladar/inducido químicamente , Fisura del Paladar/genética , Factor de Transcripción MSX1/genética , Ratones , Hueso Paladar , Fenitoína , Transducción de Señal
4.
Development ; 147(21)2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32467233

RESUMEN

Nonsyndromic clefts of the lip and palate are common birth defects resulting from gene-gene and gene-environment interactions. Mutations in human MSX1 have been linked to orofacial clefting and we show here that Msx1 deficiency causes a growth defect of the medial nasal process (Mnp) in mouse embryos. Although this defect alone does not disrupt lip formation, Msx1-deficient embryos develop a cleft lip when the mother is transiently exposed to reduced oxygen levels or to phenytoin, a drug known to cause embryonic hypoxia. In the absence of interacting environmental factors, the Mnp growth defect caused by Msx1 deficiency is modified by a Pax9-dependent 'morphogenetic regulation', which modulates Mnp shape, rescues lip formation and involves a localized abrogation of Bmp4-mediated repression of Pax9 Analyses of GWAS data revealed a genome-wide significant association of a Gene Ontology morphogenesis term (including assigned roles for MSX1, MSX2, PAX9, BMP4 and GREM1) specifically for nonsyndromic cleft lip with cleft palate. Our data indicate that MSX1 mutations could increase the risk for cleft lip formation by interacting with an impaired morphogenetic regulation that adjusts Mnp shape, or through interactions that inhibit Mnp growth.


Asunto(s)
Hipoxia/embriología , Hipoxia/metabolismo , Labio/embriología , Factor de Transcripción MSX1/deficiencia , Morfogénesis , Animales , Proteína Morfogenética Ósea 4/metabolismo , Labio Leporino/embriología , Labio Leporino/genética , Labio Leporino/patología , Femenino , Regulación del Desarrollo de la Expresión Génica , Genoma , Proteínas de Homeodominio/metabolismo , Humanos , Hipoxia/genética , Factor de Transcripción MSX1/genética , Factor de Transcripción MSX1/metabolismo , Mesodermo/embriología , Mesodermo/metabolismo , Ratones Endogámicos C57BL , Morfogénesis/genética , Mutación/genética , Nariz/embriología , Oxígeno/metabolismo , Factor de Transcripción PAX9/metabolismo , Fenitoína , Respiración , Regulación hacia Arriba/genética
5.
Development ; 146(18)2019 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-31444215

RESUMEN

Developmental defects affecting the heart and aortic arch arteries are a significant phenotype observed in individuals with 22q11 deletion syndrome and are caused by a microdeletion on chromosome 22q11. TBX1, one of the deleted genes, is expressed throughout the pharyngeal arches and is considered a key gene, when mutated, for the arch artery defects. Pax9 is expressed in the pharyngeal endoderm and is downregulated in Tbx1 mutant mice. We show here that Pax9-deficient mice are born with complex cardiovascular malformations that affect the outflow tract and aortic arch arteries with failure of the 3rd and 4th pharyngeal arch arteries to form correctly. Transcriptome analysis indicated that Pax9 and Tbx1 may function together, and mice double heterozygous for Tbx1/Pax9 presented with a significantly increased incidence of interrupted aortic arch when compared with Tbx1 heterozygous mice. Using a novel Pax9Cre allele, we demonstrated that the site of this Tbx1-Pax9 genetic interaction is the pharyngeal endoderm, therefore revealing that a Tbx1-Pax9-controlled signalling mechanism emanating from the pharyngeal endoderm is required for crucial tissue interactions during normal morphogenesis of the pharyngeal arch artery system.


Asunto(s)
Arterias/embriología , Región Branquial/irrigación sanguínea , Sistema Cardiovascular/embriología , Endodermo/embriología , Morfogénesis , Factor de Transcripción PAX9/metabolismo , Faringe/embriología , Proteínas de Dominio T Box/metabolismo , Animales , Sistema Cardiovascular/metabolismo , Diferenciación Celular/genética , Embrión de Mamíferos/anomalías , Eliminación de Gen , Redes Reguladoras de Genes , Heterocigoto , Ratones Endogámicos C57BL , Modelos Biológicos , Mutación/genética , Cresta Neural/patología , Factor de Transcripción PAX9/deficiencia , Unión Proteica , Transducción de Señal
6.
J Pathol ; 244(2): 164-175, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29055049

RESUMEN

PAX9 is a transcription factor of the PAX family characterized by a DNA-binding paired domain. Previous studies have suggested a potential role of PAX9 in squamous cell differentiation and carcinogenesis of the oro-oesophageal epithelium. However, its functional roles in differentiation and carcinogenesis remain unclear. In this study, Pax9 deficiency in mouse oesophagus promoted cell proliferation, delayed cell differentiation, and altered the global gene expression profile. Ethanol exposure downregulated PAX9 expression in human oesophageal epithelial cells in vitro and mouse forestomach and tongue in vivo. We further showed that PAX9 was downregulated in human oro-oesophageal squamous cell carcinoma (OESCC), and its downregulation was associated with alcohol drinking and promoter hypermethylation. Moreover, ad libitum feeding with a liquid diet containing ethanol for 40 weeks or Pax9 deficiency promoted N-nitrosomethylbenzylamine-induced squamous cell carcinogenesis in mouse tongue, oesophagus, and forestomach. In conclusion, PAX9 regulates squamous cell differentiation in the oro-oesophageal epithelium. Alcohol drinking and promoter hypermethylation are associated with PAX9 silencing in human OESCC. PAX9 downregulation may contribute to alcohol-associated oro-oesophageal squamous cell carcinogenesis. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Diferenciación Celular , Transformación Celular Neoplásica/metabolismo , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas de Esófago/metabolismo , Factor de Transcripción PAX9/metabolismo , Factores de Transcripción Paired Box/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Neoplasias de la Lengua/metabolismo , Consumo de Bebidas Alcohólicas/efectos adversos , Animales , Línea Celular , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Metilación de ADN , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/patología , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Factor de Transcripción PAX9/genética , Factores de Transcripción Paired Box/deficiencia , Factores de Transcripción Paired Box/genética , Regiones Promotoras Genéticas , Factores de Riesgo , Transducción de Señal , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Neoplasias de la Lengua/genética , Neoplasias de la Lengua/patología , Transcriptoma
7.
Monoclon Antib Immunodiagn Immunother ; 35(5): 259-262, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27705080

RESUMEN

Pax genes encode an evolutionary conserved group of transcription factors with multiple roles during embryonic development and for cell type specification in normal and malignant tissues of the adult organism. In mice, Pax1 is required for the formation of specific skeletal structures as well as for the development of a fully functional thymus. In humans, the PAX1 locus has been linked to otofaciocervical syndrome, idiopathic scoliosis, and to a higher susceptibility for androgenic alopecia. In addition, the methylation status of PAX1 has recently emerged as a sensitive marker for predictive screening of cervical cancer. To provide a reagent for reproducible detection of Pax1 expression, we have generated rat monoclonal antibodies (MAbs) against the murine Pax1 protein. MAbs of one clone (clone 5A2) specifically detect mouse Pax1 protein in Western blot analyses. Moreover, the anti-Pax1 MAbs cross-react with human PAX1 protein and are applicable in immunohistochemical detection procedures using paraformaldehyde/formalin-fixed tissues embedded in paraffin. The anti-Pax1 MAbs provide a reliable reagent for reproducible Pax1/PAX1 protein expression analyses and, therefore, may help to improve diagnostic protocols in clinical settings involving deregulated expression of Pax1/PAX1.

8.
PLoS Genet ; 12(3): e1005914, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26968009

RESUMEN

Nonsyndromic orofacial clefts are common birth defects with multifactorial etiology. The most common type is cleft lip, which occurs with or without cleft palate (nsCLP and nsCLO, respectively). Although genetic components play an important role in nsCLP, the genetic factors that predispose to palate involvement are largely unknown. In this study, we carried out a meta-analysis on genetic and clinical data from three large cohorts and identified strong association between a region on chromosome 15q13 and nsCLP (P = 8.13 × 10(-14) for rs1258763; relative risk (RR): 1.46, 95% confidence interval (CI): 1.32-1.61)) but not nsCLO (P = 0.27; RR: 1.09 (0.94-1.27)). The 5 kb region of strongest association maps downstream of Gremlin-1 (GREM1), which encodes a secreted antagonist of the BMP4 pathway. We show during mouse embryogenesis, Grem1 is expressed in the developing lip and soft palate but not in the hard palate. This is consistent with genotype-phenotype correlations between rs1258763 and a specific nsCLP subphenotype, since a more than two-fold increase in risk was observed in patients displaying clefts of both the lip and soft palate but who had an intact hard palate (RR: 3.76, CI: 1.47-9.61, Pdiff<0.05). While we did not find lip or palate defects in Grem1-deficient mice, wild type embryonic palatal shelves developed divergent shapes when cultured in the presence of ectopic Grem1 protein (P = 0.0014). The present study identified a non-coding region at 15q13 as the second, genome-wide significant locus specific for nsCLP, after 13q31. Moreover, our data suggest that the closely located GREM1 gene contributes to a rare clinical nsCLP entity. This entity specifically involves abnormalities of the lip and soft palate, which develop at different time-points and in separate anatomical regions.


Asunto(s)
Encéfalo/anomalías , Labio Leporino/genética , Fisura del Paladar/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Péptidos y Proteínas de Señalización Intercelular/genética , Alelos , Animales , Encéfalo/patología , Cromosomas Humanos Par 15 , Labio Leporino/patología , Fisura del Paladar/patología , Genotipo , Humanos , Ratones , Población Blanca
9.
Evodevo ; 6: 35, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26568815

RESUMEN

BACKGROUND: The variation in mandibular morphology of mammals reflects specialisations for different diets. Omnivorous and carnivorous mammals posses large mandibular coronoid processes, while herbivorous mammals have proportionally smaller or absent coronoids. This is correlated with the relative size of the temporalis muscle that forms an attachment to the coronoid process. The role of this muscle attachment in the development of the variation of the coronoid is unclear. RESULTS: By comparative developmental biology and mouse knockout studies, we demonstrate here that the initiation and growth of the coronoid are two independent processes, with initiation being intrinsic to the ossifying bone and growth dependent upon the extrinsic effect of muscle attachment. A necessary component of the intrinsic patterning is identified as the paired domain transcription factor Pax9. We also demonstrate that Sox9 plays a role independent of chondrogenesis in the growth of the coronoid process in response to muscle interaction. CONCLUSIONS: The mandibular coronoid process is initiated by intrinsic factors, but later growth is dependent on extrinsic signals from the muscle. These extrinsic influences are hypothesised to be the basis of the variation in coronoid length seen across the mammalian lineage.

10.
PLoS Genet ; 10(10): e1004709, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25299669

RESUMEN

In mammals, taste buds develop in different regions of the oral cavity. Small epithelial protrusions form fungiform papillae on the ectoderm-derived dorsum of the tongue and contain one or few taste buds, while taste buds in the soft palate develop without distinct papilla structures. In contrast, the endoderm-derived circumvallate and foliate papillae located at the back of the tongue contain a large number of taste buds. These taste buds cluster in deep epithelial trenches, which are generated by intercalating a period of epithelial growth between initial placode formation and conversion of epithelial cells into sensory cells. How epithelial trench formation is genetically regulated during development is largely unknown. Here we show that Pax9 acts upstream of Pax1 and Sox9 in the expanding taste progenitor field of the mouse circumvallate papilla. While a reduced number of taste buds develop in a growth-retarded circumvallate papilla of Pax1 mutant mice, its development arrests completely in Pax9-deficient mice. In addition, the Pax9 mutant circumvallate papilla trenches lack expression of K8 and Prox1 in the taste bud progenitor cells, and gradually differentiate into an epidermal-like epithelium. We also demonstrate that taste placodes of the soft palate develop through a Pax9-dependent induction. Unexpectedly, Pax9 is dispensable for patterning, morphogenesis and maintenance of taste buds that develop in ectoderm-derived fungiform papillae. Collectively, our data reveal an endoderm-specific developmental program for the formation of taste buds and their associated papilla structures. In this pathway, Pax9 is essential to generate a pool of taste bud progenitors and to maintain their competence towards prosensory cell fate induction.


Asunto(s)
Células Madre Embrionarias/fisiología , Endodermo/citología , Factores de Transcripción Paired Box/metabolismo , Lengua/embriología , Animales , Endodermo/embriología , Células Epiteliales/fisiología , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Factor de Transcripción PAX9 , Factores de Transcripción Paired Box/genética , Paladar Blando/citología , Paladar Blando/embriología , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Papilas Gustativas/embriología , Lengua/citología , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
11.
Genesis ; 52(7): 687-94, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24700590

RESUMEN

Nipbl (Scc2) and Mau2 (Scc4) encode evolutionary conserved proteins that play a vital role for loading the cohesin complex onto chromosomes, thereby ensuring accurate chromosome segregation during cell division. While mutations in human NIPBL are known to cause the developmental disorder Cornelia de Lange syndrome, the functions of Nipbl and Mau2 in mammalian development are poorly defined. Here we generated conditional alleles for both genes in mice and show that neural crest cell-specific inactivation of Nipbl or Mau2 strongly affects craniofacial development. Surprisingly, the early phase of neural crest cell proliferation and migration is only moderately affected in these mutants. Moreover, we found that Mau2 single homozygous mutants exhibited a more severe craniofacial phenotype when compared to that of Nipbl;Mau2 double homozygous mutants. This raises the possibility that the Mau2/Nipbl protein interaction is not only required for cohesin loading, but may also be required to restrict the level of Nipbl involved in regulating gene expression. Together, the data suggest that proliferating neural crest cells tolerate a substantial reduction of cohesin loading proteins and we propose that the successive decrease of cohesin loading proteins in neural crest cells may alter developmental gene regulation in a highly dynamic manner.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , Anomalías Craneofaciales/genética , Cresta Neural/metabolismo , Factores de Transcripción/genética , Animales , Proteínas de Ciclo Celular , Proteínas Cromosómicas no Histona/metabolismo , Anomalías Craneofaciales/embriología , Proteínas de Unión al ADN , Femenino , Masculino , Ratones , Factores de Transcripción/metabolismo
12.
Acta Neuropathol Commun ; 1: 35, 2013 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-24252690

RESUMEN

BACKGROUND: Medulloblastomas, the most frequent malignant brain tumours affecting children, comprise at least 4 distinct clinicogenetic subgroups. Aberrant sonic hedgehog (SHH) signalling is observed in approximately 25% of tumours and defines one subgroup. Although alterations in SHH pathway genes (e.g. PTCH1, SUFU) are observed in many of these tumours, high throughput genomic analyses have identified few other recurring mutations. Here, we have mutagenised the Ptch+/- murine tumour model using the Sleeping Beauty transposon system to identify additional genes and pathways involved in SHH subgroup medulloblastoma development. RESULTS: Mutagenesis significantly increased medulloblastoma frequency and identified 17 candidate cancer genes, including orthologs of genes somatically mutated (PTEN, CREBBP) or associated with poor outcome (PTEN, MYT1L) in the human disease. Strikingly, these candidate genes were enriched for transcription factors (p=2x10-5), the majority of which (6/7; Crebbp, Myt1L, Nfia, Nfib, Tead1 and Tgif2) were linked within a single regulatory network enriched for genes associated with a differentiated neuronal phenotype. Furthermore, activity of this network varied significantly between the human subgroups, was associated with metastatic disease, and predicted poor survival specifically within the SHH subgroup of tumours. Igf2, previously implicated in medulloblastoma, was the most differentially expressed gene in murine tumours with network perturbation, and network activity in both mouse and human tumours was characterised by enrichment for multiple gene-sets indicating increased cell proliferation, IGF signalling, MYC target upregulation, and decreased neuronal differentiation. CONCLUSIONS: Collectively, our data support a model of medulloblastoma development in SB-mutagenised Ptch+/- mice which involves disruption of a novel transcription factor network leading to Igf2 upregulation, proliferation of GNPs, and tumour formation. Moreover, our results identify rational therapeutic targets for SHH subgroup tumours, alongside prognostic biomarkers for the identification of poor-risk SHH patients.


Asunto(s)
Meduloblastoma/genética , Meduloblastoma/metabolismo , Neuronas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Cerebelo/metabolismo , Cerebelo/patología , Progresión de la Enfermedad , Expresión Génica , Humanos , Factor II del Crecimiento Similar a la Insulina/genética , Factor II del Crecimiento Similar a la Insulina/metabolismo , Masculino , Meduloblastoma/diagnóstico , Meduloblastoma/patología , Ratones , Ratones Endogámicos CBA , Ratones Transgénicos , Receptores Patched , Receptor Patched-1 , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo
13.
Stem Cell Res ; 11(3): 1003-12, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23917481

RESUMEN

Anterior foregut endoderm (AFE) gives rise to therapeutically relevant cell types in tissues such as the esophagus, salivary glands, lung, thymus, parathyroid and thyroid. Despite its importance, reports describing the generation of AFE from pluripotent stem cells (PSCs) by directed differentiation have mainly focused on the Nkx2.1(+) lung and thyroid lineages. Here, we describe a novel protocol to derive a subdomain of AFE, identified by expression of Pax9, from PSCs using small molecules and defined media conditions. We generated a reporter PSC line for isolation and characterization of Pax9(+) AFE cells, which when transplanted in vivo, can form several distinct complex AFE-derived epithelia, including mucosal glands and stratified squamous epithelium. Finally, we show that the directed differentiation protocol can be used to generate AFE from human PSCs. Thus, this work both broadens the range of PSC-derived AFE tissues and creates a platform enabling the study of AFE disorders.


Asunto(s)
Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Madre Pluripotentes/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular , Linaje de la Célula/efectos de los fármacos , Medios de Cultivo/farmacología , Células Madre Embrionarias/citología , Células Epiteliales/metabolismo , Células Epiteliales/trasplante , Factor Nuclear 3-beta del Hepatocito/metabolismo , Humanos , Ratones , Proteínas Nucleares/metabolismo , Factor de Transcripción PAX9/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Factores de Transcripción SOXB1/metabolismo , Factor Nuclear Tiroideo 1 , Factores de Transcripción/metabolismo , Transcriptoma
14.
Hum Mol Genet ; 22(1): 124-39, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23026747

RESUMEN

Hedgehog (Hh) signaling is involved in patterning and morphogenesis of most organs in the developing mammalian embryo. Despite many advances in understanding core components of the pathway, little is known about how the activity of the Hh pathway is adjusted in organ- and tissue-specific developmental processes. Mutations in EVC or EVC2 disrupt Hh signaling in tooth and bone development. Using mouse models, we show here that Evc and Evc2 are mutually required for localizing to primary cilia and also for maintaining their normal protein levels. Consistent with Evc and Evc2 functioning as a complex, the skeletal phenotypes in either single or double homozygous mutant mice are virtually indistinguishable. Smo translocation to the cilium was normal in Evc2-deficient chondrocytes following Hh activation with the Smo-agonist SAG. However, Gli3 recruitment to cilia tips was reduced and Sufu/Gli3 dissociation was impaired. Interestingly, we found Smo to co-precipitate with Evc/Evc2, indicating that in some cells Hh signaling requires direct interaction of Smo with the Evc/Evc2 complex. Expression of a dominantly acting Evc2 mutation previously identified in Weyer's acrodental dysostosis (Evc2Δ43) caused mislocalization of Evc/Evc2Δ43 within the cilium and also reproduced the Gli3-related molecular defects observed in Evc2(-/-) chondrocytes. Moreover, Evc silencing in Sufu(-/-) cells attenuated the output of the Hh pathway, suggesting that Evc/Evc2 also promote Hh signaling in the absence of Sufu. Together our data reveal that the Hh pathway involves Evc/Evc2-dependent modulations that are necessary for normal endochondral bone formation.


Asunto(s)
Condrocitos/metabolismo , Cilios/metabolismo , Proteínas Hedgehog/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteínas de la Membrana/fisiología , Proteínas del Tejido Nervioso/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Represoras/metabolismo , Animales , Péptidos y Proteínas de Señalización Intercelular , Proteínas de la Membrana/metabolismo , Ratones , Ratones Mutantes , Transporte de Proteínas , Receptor Smoothened , Proteína Gli3 con Dedos de Zinc
15.
J Immunol ; 186(4): 2013-23, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21248256

RESUMEN

Ly49E is an unusual member of the Ly49 family that is expressed on fetal NK cells, epithelial T cells, and NKT cells, but not on resting adult NK cells. Ly49E(bgeo/bgeo) mice in which the Ly49E gene was disrupted by inserting a ß-geo transgene were healthy, fertile, and had normal numbers of NK and T cells in all organs examined. Their NK cells displayed normal expression of Ly49 and other NK cell receptors, killed tumor and MHC class I-deficient cells efficiently, and produced normal levels of IFN-γ. In heterozygous Ly49E(+/bgeo) mice, the proportion of epidermal T cells, NKT cells, and IL-2-activated NK cells that expressed Ly49E was about half that found in wild-type mice. Surprisingly, although splenic T cells rarely expressed Ly49E, IL-2-activated splenic T cells from Ly49E(bgeo/bgeo) mice were as resistant to growth in G418 as NK cells and expressed similar levels of ß-geo transcripts, suggesting that disruption of the Ly49E locus had increased its expression in these cells to the same level as that in NK cells. Importantly, however, the proportion of G418-resistant heterozygous Ly49E(+/bgeo) cells that expressed Ly49E from the wild-type allele was similar to that observed in control cells. Collectively, these findings demonstrate that Ly49E is not required for the development or homeostasis of NK and T cell populations or for the acquisition of functional competence in NK cells and provide compelling evidence that Ly49E is expressed in a probabilistic manner in adult NK cells and T cells.


Asunto(s)
Diferenciación Celular/inmunología , Regulación de la Expresión Génica/inmunología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Subfamilia A de Receptores Similares a Lectina de Células NK/deficiencia , Subfamilia A de Receptores Similares a Lectina de Células NK/genética , Linfocitos T/inmunología , Linfocitos T/metabolismo , Animales , Diferenciación Celular/genética , Células Cultivadas , Senescencia Celular/genética , Senescencia Celular/inmunología , Técnicas de Sustitución del Gen , Células Asesinas Naturales/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Subfamilia A de Receptores Similares a Lectina de Células NK/biosíntesis
16.
Dev Dyn ; 239(11): 2860-74, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20845426

RESUMEN

Mutations in the gene encoding the T-box transcription factor TBX22 cause X-linked cleft palate and ankyloglossia in humans. Here we show that Tbx22 expression during facial and palatal development is regulated by FGF and BMP signaling. Our results demonstrate that FGF8 induces Tbx22 in the early face while BMP4 represses and thus restricts its expression. This regulation is conserved between chicken and mouse, although the Tbx22-expression patterns differ considerably between these two species. We suggest that these species-specific differences may result at least in part from differences in the spatiotemporal patterns of BMP activity, but we exclude a direct repression of Tbx22 by the BMP-inducible transcriptional repressor MSX1. Together these findings help to integrate Tbx22 into the molecular network of factors regulating facial development.


Asunto(s)
Embrión de Mamíferos/metabolismo , Cara/embriología , Hueso Paladar/embriología , Hueso Paladar/metabolismo , Proteínas de Dominio T Box/metabolismo , Animales , Apoptosis/genética , Apoptosis/fisiología , Proteína Morfogenética Ósea 4/genética , Proteína Morfogenética Ósea 4/metabolismo , Proliferación Celular , Embrión de Pollo , Fisura del Paladar/embriología , Fisura del Paladar/metabolismo , Embrión de Mamíferos/ultraestructura , Factor 8 de Crecimiento de Fibroblastos/genética , Factor 8 de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Noqueados , Microscopía de Fuerza Atómica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas de Dominio T Box/genética
17.
J Anat ; 217(4): 300-11, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20579172

RESUMEN

The division of the neocortex into functional areas (the cortical map) differs little between individuals, although brain lesions in development can lead to substantial re-organization of regional identity. We are studying how the cortical map is established in the human brain as a first step towards understanding this plasticity. Previous work on rodent development has identified certain transcription factors (e.g. Pax6, Emx2) expressed in gradients across the neocortex that appear to control regional expression of cell adhesion molecules and organization of area-specific thalamocortical afferent projections. Although mechanisms may be shared, the human neocortex is composed of different and more complex local area identities. Using Affymetrix gene chips of human foetal brain tissue from 8 to 12.5 post-conceptional weeks [PCW, equivalent to Carnegie stage (CS) 23, to Foetal stage (F) 4], human material obtained from the MRC-Wellcome Trust Human Developmental Biology Resource (http://www.hdbr.org), we have identified a number of genes that exhibit gradients along the anterior-posterior axis of the neocortex. Gene probe sets that were found to be upregulated posteriorally compared to anteriorally, included EMX2, COUPTFI and FGF receptor 3, and those upregulated anteriorally included cell adhesion molecules such as cadherins and protocadherins, as well as potential motor cortex markers and frontal markers (e.g. CNTNAP2, PCDH17, ROBO1, and CTIP2). Confirmation of graded expression for a subset of these genes was carried out using real-time PCR. Furthermore, we have established a dissociation cell culture model utilizing tissue dissected from anteriorally or posteriorally derived developing human neocortex that exhibits similar gradients of expression of these genes for at least 72 h in culture.


Asunto(s)
Moléculas de Adhesión Celular/genética , Regulación del Desarrollo de la Expresión Génica/genética , Expresión Génica , Neocórtex/embriología , Neocórtex/metabolismo , Proteínas del Tejido Nervioso/genética , Factores de Transcripción/genética , Animales , Mapeo Encefálico/métodos , Factor de Transcripción COUP I/genética , Cadherinas/genética , Moléculas de Adhesión Celular/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Proteínas de Homeodominio/genética , Humanos , Proteínas de la Membrana/genética , Análisis por Micromatrices , Proteínas del Tejido Nervioso/metabolismo , Ratas , Receptores Inmunológicos/genética , Proteínas Represoras/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Roedores/embriología , Roedores/genética , Roedores/metabolismo , Análisis de Secuencia de ADN , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/genética , Regulación hacia Arriba/genética , Proteínas Roundabout
18.
Dev Biol ; 340(2): 438-49, 2010 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-20123092

RESUMEN

Developmental abnormalities of craniofacial structures and teeth often occur sporadically and the underlying genetic defects are not well understood, in part due to unknown gene-gene interactions. Pax9 and Msx1 are co-expressed during craniofacial development, and mice that are single homozygous mutant for either gene exhibit cleft palate and an early arrest of tooth formation. Whereas in vitro assays have demonstrated that protein-protein interactions between Pax9 and Msx1 can occur, it is unclear if Pax9 and Msx1 interact genetically in vivo during development. To address this question, we compounded the Pax9 and Msx1 mutations and observed that double homozygous mutants exhibit an incompletely penetrant cleft lip phenotype. Moreover, in double heterozygous mutants, the lower incisors were consistently missing and we find that transgenic BMP4 expression partly rescues this phenotype. Reduced expression of Shh and Bmp2 indicates that a smaller "incisor field" forms in Pax9(+/-);Msx1(+/-) mutants, and dental epithelial growth is substantially reduced after the bud to cap stage transition. This defect is preceded by drastically reduced mesenchymal expression of Fgf3 and Fgf10, two genes that encode known stimulators of epithelial growth during odontogenesis. Consistent with this result, cell proliferation is reduced in both the dental epithelium and mesenchyme of double heterozygous mutants. Furthermore, the developing incisors lack mesenchymal Notch1 expression at the bud stage and exhibit abnormal ameloblast differentiation on both labial and lingual surfaces. Thus, Msx1 and Pax9 interact synergistically throughout lower incisor development and affect multiple signaling pathways that influence incisor size and symmetry. The data also suggest that a combined reduction of PAX9 and MSX1 gene dosage in humans may increase the risk for orofacial clefting and oligodontia.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Labio/embriología , Factor de Transcripción MSX1/genética , Morfogénesis/genética , Factores de Transcripción Paired Box/genética , Diente/metabolismo , Animales , Embrión de Mamíferos , Heterocigoto , Inmunohistoquímica , Hibridación in Situ , Factor de Transcripción MSX1/metabolismo , Factor de Transcripción MSX1/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Endogámicos , Ratones Noqueados , Odontogénesis/genética , Factor de Transcripción PAX9 , Factores de Transcripción Paired Box/metabolismo , Factores de Transcripción Paired Box/fisiología
19.
J Gastroenterol ; 44(9): 897-911, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19468668

RESUMEN

PURPOSE: As the premalignant lesion of human esophageal adenocarcinoma (EAC), Barrett's esophagus (BE) is characterized by intestinal metaplasia in the normal esophagus (NE). Gene expression profiling with microarray and serial analysis of gene expression (SAGE) may help us understand the potential molecular mechanism of human BE. METHODS: We analyzed three microarray datasets (two cDNA arrays and one oligonucleotide array) and one SAGE dataset with statistical tools, significance analysis of microarrays (SAM) and SAGE(Poisson), to identify individual genes differentially expressed in BE. Gene set enrichment analysis (GSEA) was used to identify a priori defined sets of genes that were differentially expressed. These gene sets were grouped according to either certain signaling pathways (GSEA curated), or the presence of consensus binding sequences of known transcription factors (GSEA motif). Immunohistochemical staining (IHC) was used to validate differential gene expression. RESULTS: Both SAM and SAGE(Poisson) identified 68 differentially expressed genes (55 BE genes and 13 NE genes) with an arbitrary cutoff ratio (> or =4-fold). With IHC on matched pairs of NE and BE tissues from 6 patients, these genes were grouped into 6 categories: category I (25 genes only expressed in BE), category II (5 genes only expressed in NE), category III (8 genes expressed more in BE than in NE), and category IV (2 genes expressed more in NE than in BE). Differential expression of the remaining genes was not confirmed by IHC either due to false discovery (category V), or lack of proper antibodies (category VI). Besides individual genes, the TGFbeta pathway and several transcription factors (CDX2, HNF1, and HNF4) were identified by GSEA as enriched pathways and motifs in BE. Apart from 9 target genes known to be up-regulated in BE, IHC staining confirmed up-regulation of 19 additional CDX1 and CDX2 target genes in BE. CONCLUSION: Our data suggested an important role of CDX1 and CDX2 in the development of BE. The IHC-confirmed gene list will lead to future studies on the molecular mechanism of BE.


Asunto(s)
Esófago de Barrett/genética , Perfilación de la Expresión Génica/métodos , Proteínas de Homeodominio/genética , Factor de Transcripción CDX2 , Bases de Datos Genéticas , Expresión Génica , Humanos , Inmunohistoquímica , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Transducción de Señal , Factores de Transcripción/genética , Regulación hacia Arriba
20.
Arch Oral Biol ; 54(1): 55-62, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18951121

RESUMEN

OBJECTIVES: Odontoblasts play a central role during the dentin formation by organic matrix production and mineralisation. Recently, suitable in vitro techniques for studying mature primary odontoblasts and the newly differentiated odontoblasts have been developed. Firstly, the gene expression profiles of native and cultured odontoblasts were compared at large-scale to investigate the similarities and differences between the samples. Secondly, differential expression levels of the genes encoding neuronal proteins were analyzed to study odontoblasts sensory function. DESIGN: Microarray analysis was performed to mature native and cultured pulp-derived odontoblast-like cells to compare their transcriptome. Then, the probes positive only in one sample were divided into gene ontology categories. Expression levels of selected neuronal proteins were further studied with quantitative PCR, and at the protein level by immunofluorescence of mature and newly differentiated odontoblasts in developing tooth. RESULTS: Remarkable similarities between the general and neuronal protein gene expression profiles were observed. Higher cortistatin, galanin, somatostatin receptor 1 (SSTR1) and tyrosine phosphatase receptor type Z1 (PTPRZ1) expression was detected in native than in cultured odontoblast at the mRNA level. Pronociceptin was more abundantly expressed in cultured than in native odontoblasts. Immunofluorescence of mature and newly differentiated odontoblasts on human tooth germs confirmed the results. CONCLUSIONS: Cultured odontoblasts used in this study have similar general gene expression pattern to native odontoblasts, and therefore offer a valuable tool for the in vitro odontoblast studies. The expression of PTPRZ1 and galanin, which participate in sensory signal transduction, supports the previously suggested role of odontoblasts as sensory cells.


Asunto(s)
Pulpa Dental/metabolismo , Neuropéptidos/genética , Odontoblastos/metabolismo , Adolescente , Adulto , Células Cultivadas , Femenino , Galanina/genética , Perfilación de la Expresión Génica , Humanos , Masculino , Análisis por Micromatrices , Neuropéptidos/metabolismo , Precursores de Proteínas/genética , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/genética , Receptores Opioides/genética , Receptores de Somatostatina/genética , Transducción de Señal , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA