Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Neurosci ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977300

RESUMEN

Activity of central amygdala (CeA) PKCδ expressing neurons has been linked to appetite regulation, anxiety-like behaviors, pain sensitivity, and addiction-related behaviors. Studies of the role that CeA PKCδ+ neurons play in these behaviors have largely been carried out in mice, and genetic tools that would allow selective manipulation of PKCδ+ cells in rats have been lacking. Here, we used a CRISPR/Cas9 strategy to generate a transgenic Prkcd-cre knock-in rat, and characterized this model using anatomical, electrophysiological and behavioral approaches in both sexes. In the CeA, Cre was selectively expressed in PKCδ+ cells. Anterograde projections of PKCδ+ neurons to cortical regions, subcortical regions, several hypothalamic nuclei, the amygdala complex, and midbrain dopaminergic regions were largely consistent with published mouse data. In a behavioral screen, we found no differences between Cre+ rats and Cre- wildtype littermates. Optogenetic stimulation of CeA PKCδ+ neurons in a palatable food intake assay resulted in an increased latency to first feeding and decreased total food intake, once again replicating published mouse findings. Lastly, using a real-time place preference task, we found that stimulation of PKCδ+ neurons promoted aversion, without affecting locomotor activity. Collectively, these findings establish the novel Prkcd-Cre rat line as a valuable tool, that complements available mouse lines for investigating the functional role of PKCδ+ neurons.Significance Statement The central nucleus of the amygdala (CeA), involved in processing threat and aversion signals, comprises multiple neuronal subtypes. Expression of protein kinase C isoform δ, PKCδ, marks CeA neurons that respond to aversive stimuli, and have also been shown to play a role in alcohol-related behaviors. Genetic tools to investigate the functional role of PKCδ+ neurons in rat models have been lacking. We describe the development and characterization of a novel Prkcd knock-in transgenic rat generated using CRISPR strategy. In this model, we confirm known projection targets of CeA PKCδ+ neurons and replicate functional consequences of their activation previously found in mice. This establishes the line as a novel model to study the role of PKCδ+ neurons in rat models.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38755284

RESUMEN

The transition to alcohol use disorder (AUD) involves persistent neuroadaptations in executive control functions primarily regulated by the medial prefrontal cortex. However, the neurophysiological correlates to behavioral manifestations of AUD are not fully defined. The association between cortical neuroadaptations and behavioral manifestations of addiction was studied using a multi-symptomatic operant model based on the DSM-5 diagnostic criteria for AUD. This model aimed to characterize an AUD-vulnerable and AUD-resistant subpopulation of outbred male Wistar rats and was combined with electrophysiological measurements in the prelimbic cortex (PL). Mirroring clinical observations, rats exhibited individual variability in their vulnerability to develop AUD-like behavior, including motivation to seek for alcohol (crit 1), increased effort to obtain the substance (crit 2), and continued drinking despite negative consequences (crit 3). Only a small subset of rats met all the aforementioned AUD criteria (3 crit, AUD-vulnerable), while a larger fraction was considered AUD-resilient (0 crit). The development of AUD-like behavior was characterized by disruptions in glutamatergic synaptic activity, involving decreased frequency of spontaneous excitatory postsynaptic currents (sEPSCs) and heightened intrinsic excitability in layers 2/3 PL pyramidal neurons. These alterations were concomitant with a significant impairment in the ability of mGlu2/3 receptors to negatively regulate glutamate release in the PL but not in downstream regions like the basolateral amygdala or nucleus accumbens core. In conclusion alterations in PL synaptic activity were strongly associated with individual addiction scores, indicating their role as potential markers of the behavioral manifestations linked to AUD psychopathology.

4.
Neuropharmacology ; 248: 109866, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38364970

RESUMEN

The Nociceptin/Orphanin FQ (N/OFQ) peptide and its receptor NOP are highly expressed within several regions of the mesolimbic system, including the ventral tegmental area (VTA). Evidence indicates that the N/OFQ-NOP receptor system is involved in reward processing and historically it has been proposed that activation of NOP receptors attenuates the motivation for substances of abuse. However, recent findings demonstrated that drug self-administration and relapse to drug-seeking are also attenuated after administration of NOP receptor antagonists. Here, to shed light on the mechanisms through which NOP receptor blockers modulate these processes, we utilized ex vivo patch-clamp recordings to investigate the effect of the selective NOP receptor antagonist LY2817412 on VTA dopaminergic (DA) function in male rats. Results showed that, similar to the endogenous NOP receptor agonist N/OFQ, LY2817412 reduced the spontaneous basal firing discharge of VTA DA neurons. Consistently, we found that NOP receptors are expressed both in VTA DA and GABA cells and that LY2817412 slice perfusion increased GABA release onto VTA DA cells. Finally, in the attempt to dissect the role of postsynaptic and presynaptic NOP receptors, we tested the effect of N/OFQ and LY2817412 in the presence of GABA receptors blockers. Results showed that the effect of LY2817412 was abolished following pretreatment with GABABR, but not GABAAR, blockers. Conversely, inhibition of DA neuronal activity by N/OFQ was unaffected by blockade of GABA receptors. Altogether, these results suggest that both NOP receptor agonists and antagonists can decrease VTA DA neuronal activity, but through distinct mechanisms of action. The effect of NOP receptor antagonists occurs through a GABABR-mediated mechanism while NOP receptor agonists seem to act via a direct effect on VTA DA neurons.


Asunto(s)
Dopamina , Receptores Opioides , Ratas , Masculino , Animales , Receptores Opioides/metabolismo , Área Tegmental Ventral/metabolismo , Receptor de Nociceptina , Receptores de GABA-B , Nociceptina , Neuronas Dopaminérgicas/metabolismo , Ácido gamma-Aminobutírico , Péptidos Opioides/farmacología
5.
Neuropsychopharmacology ; 48(9): 1386-1395, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36739350

RESUMEN

Alcohol use despite negative consequences is a core phenomenon of alcohol addiction. We recently used alcohol self-administration that is resistant to footshock punishment as a model of this behavior, and found that activity of PKCδ + GABAergic neurons in the central amygdala (CeA) is a determinant of individual susceptibility for punishment resistance. In the present study, we examined whether activation of GABAB receptors in CeA can attenuate the activity of PKCδ + neurons in this region, and whether this will result in suppression of punishment- resistant alcohol self-administration in the minority of rats that show this behavior. Systemic administration of the clinically approved GABAB agonist baclofen (1 and 3 mg/kg) dose- dependently reduced punishment-resistant alcohol self-administration. Bilateral microinjections of baclofen into CeA (64 ng in 0.3 µl/side) reduced the activity of PKCδ + neurons, as measured by Fos expression. This manipulation also selectively suppressed punished alcohol self-administration in punishment-resistant rats. Expression analysis indicated that virtually all CeA PKCδ + neurons express the GABAB receptor. Using in vitro electrophysiology, we found that baclofen induced hyperpolarization of CeA neurons, reducing their firing rate in response to depolarizing current injections. Together, our findings provide a potential mechanism that contributes to the clinical efficacy of baclofen in alcohol addiction. Therapeutic use of baclofen itself is limited by problems of tolerance and need for dose escalation. Our findings support a mechanistic rationale for developing novel, improved alcohol addiction medications that target GABAB receptors, and that lack these limitations, such as e.g., GABAB positive allosteric modulators (PAM:s).


Asunto(s)
Alcoholismo , Núcleo Amigdalino Central , Ratas , Animales , Baclofeno , Alcoholismo/tratamiento farmacológico , Castigo , Núcleo Amigdalino Central/metabolismo , Receptores de GABA-B/metabolismo , Etanol , Neuronas/metabolismo , Agonistas de Receptores GABA-B/farmacología , Agonistas de Receptores GABA-B/uso terapéutico
6.
Neuropharmacology ; 222: 109301, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36336069

RESUMEN

The repeated maternal separation (RMS) is a useful experimental model useful in rodents to study the long-term influence of early-life stress on brain neurophysiology. We here investigated the influence of RMS exposure on hippocampal inhibitory and excitatory synaptic transmission, long-term synaptic plasticity and the related potential alterations in learning and memory performance in adult male and female C57Bl/6J mice. Mice were separated daily from their dam for 360 min, from postnatal day 2 (PND2) to PND17, and experiments were performed at PND 60. Patch-clamp recordings in hippocampal CA1 pyramidal neurons revealed a significant enhancement of GABAergic miniature IPSC (mIPSC) frequency, and a decrease in the amplitude of glutamatergic mEPSCs in male mice exposed to RMS. Only a slight but significant reduction in the amplitude of GABAergic mIPSCs was observed in females exposed to RMS compared to the relative controls. A marked increase in long-term depression (LTD) at CA3-CA1 glutamatergic synapses and in the response to the CB1r agonist win55,212 were detected in RMS male, but not female mice. An impaired spatial memory and a reduced preference for novelty was observed in males exposed to RMS but not in females. A single injection of ß-ethynyl estradiol at PND2, prevented the changes observed in RMS male mice, suggesting that estrogens may play a protective role early in life against the exposure to stressful conditions. Our findings strengthen the idea of a sex-dependent influence of RMS on long-lasting modifications in synaptic transmission, effects that may be relevant for cognitive performance.


Asunto(s)
Privación Materna , Plasticidad Neuronal , Masculino , Femenino , Animales , Ratones , Ratones Endogámicos C57BL , Hipocampo , Memoria Espacial , Trastornos de la Memoria , Cognición , Estradiol
8.
Mol Psychiatry ; 27(12): 4893-4904, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36127428

RESUMEN

Excessive fear is a hallmark of anxiety disorders, a major cause of disease burden worldwide. Substantial evidence supports a role of prefrontal cortex-amygdala circuits in the regulation of fear and anxiety, but the molecular mechanisms that regulate their activity remain poorly understood. Here, we show that downregulation of the histone methyltransferase PRDM2 in the dorsomedial prefrontal cortex enhances fear expression by modulating fear memory consolidation. We further show that Prdm2 knock-down (KD) in neurons that project from the dorsomedial prefrontal cortex to the basolateral amygdala (dmPFC-BLA) promotes increased fear expression. Prdm2 KD in the dmPFC-BLA circuit also resulted in increased expression of genes involved in synaptogenesis, suggesting that Prdm2 KD modulates consolidation of conditioned fear by modifying synaptic strength at dmPFC-BLA projection targets. Consistent with an enhanced synaptic efficacy, we found that dmPFC Prdm2 KD increased glutamatergic release probability in the BLA and increased the activity of BLA neurons in response to fear-associated cues. Together, our findings provide a new molecular mechanism for excessive fear responses, wherein PRDM2 modulates the dmPFC -BLA circuit through specific transcriptomic changes.


Asunto(s)
Amígdala del Cerebelo , Complejo Nuclear Basolateral , Amígdala del Cerebelo/fisiología , Complejo Nuclear Basolateral/fisiología , Corteza Prefrontal/metabolismo , Miedo/fisiología , Epigénesis Genética
9.
Pharmaceuticals (Basel) ; 15(7)2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35890099

RESUMEN

The neuropeptide S (NPS) is the endogenous ligand of the NPS receptor (NPSR). The NPSR is widely expressed in brain regions that process emotional and affective behavior. NPS possesses a unique physio-pharmacological profile, being anxiolytic and promoting arousal at the same time. Intracerebroventricular NPS decreased alcohol consumption in alcohol-preferring rats with no effect in non-preferring control animals. This outcome is most probably linked to the anxiolytic properties of NPS, since alcohol preference is often associated with high levels of basal anxiety and intense stress-reactivity. In addition, NPSR mRNA was overexpressed during ethanol withdrawal and the anxiolytic-like effects of NPS were increased in rodents with a history of alcohol dependence. In line with these preclinical findings, a polymorphism of the NPSR gene was associated with anxiety traits contributing to alcohol use disorders in humans. NPS also potentiated the reinstatement of cocaine and ethanol seeking induced by drug-paired environmental stimuli and the blockade of NPSR reduced reinstatement of cocaine-seeking. Altogether, the work conducted so far indicates the NPS/NPSR system as a potential target to develop new treatments for alcohol and cocaine abuse. An NPSR agonist would be indicated to help individuals to quit alcohol consumption and to alleviate withdrawal syndrome, while NPSR antagonists would be indicated to prevent relapse to alcohol- and cocaine-seeking behavior.

10.
Br J Pharmacol ; 179(11): 2647-2658, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34854073

RESUMEN

BACKGROUND AND PURPOSE: The nociceptin/orphanin FQ (N/OFQ)-nociceptin opioid-like peptide (NOP) receptor system is widely distributed in the brain and pharmacological activation of this system revealed therapeutic potential in animal models of substance use disorder. Studies also showed that genetic deletion or pharmacological blockade of NOP receptors confer resistance to the development of alcohol abuse. Here, we have used a genetic and pharmacological approach to evaluate the therapeutic potential of NOP antagonism in smoking cessation. EXPERIMENTAL APPROACH: Constitutive NOP receptor knockout rats (NOP-/- ) and their wild-type counterparts (NOP+/+ ) were tested over a range of behaviours to characterize their motivation for nicotine. We next explored the effects of systemic administration of the NOP receptor antagonist LY2817412 (1.0 & 3.0 mg·kg-1 ) on nicotine self-administration. NOP receptor blockade was further evaluated at the brain circuitry level, by microinjecting LY2817412 (3.0 & 6.0 µg·µl-1 ) into the ventral tegmental area (VTA), nucleus accumbens (NAc) and central amygdala (CeA). KEY RESULTS: Genetic NOP receptor deletion resulted in decreased nicotine intake, decreased motivation to self-administer and attenuation of cue-induced nicotine reinstatement. LY2817412 reduced nicotine intake in NOP+/+ but not in NOP-/- rats, confirming that its effect is mediated by inhibition of NOP transmission. Finally, injection of LY2817412 into the VTA but not into the NAc or CeA decreased nicotine self-administration. CONCLUSIONS AND IMPLICATIONS: These findings indicate that inhibition of NOP transmission attenuates the motivation for nicotine through mechanisms involving the VTA and suggest that NOP receptor antagonism may represent a potential treatment for smoking cessation.


Asunto(s)
Nicotina , Área Tegmental Ventral , Animales , Nicotina/farmacología , Péptidos Opioides/metabolismo , Ratas , Receptores Opioides , Área Tegmental Ventral/metabolismo , Receptor de Nociceptina , Nociceptina
11.
Int J Mol Sci ; 22(23)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34884757

RESUMEN

Nociceptin/orphanin FQ (N/OFQ) is a 17-residue neuropeptide that binds the nociceptin opioid-like receptor (NOP). N/OFQ exhibits nucleotidic and aminoacidics sequence homology with the precursors of other opioid neuropeptides but it does not activate either MOP, KOP or DOP receptors. Furthermore, opioid neuropeptides do not activate the NOP receptor. Generally, activation of N/OFQ system exerts anti-opioids effects, for instance toward opioid-induced reward and analgesia. The NOP receptor is widely expressed throughout the brain, whereas N/OFQ localization is confined to brain nuclei that are involved in stress response such as amygdala, BNST and hypothalamus. Decades of studies have delineated the biological role of this system demonstrating its involvement in significant physiological processes such as pain, learning and memory, anxiety, depression, feeding, drug and alcohol dependence. This review discusses the role of this peptidergic system in the modulation of stress and stress-associated psychiatric disorders in particular drug addiction, mood, anxiety and food-related associated-disorders. Emerging preclinical evidence suggests that both NOP agonists and antagonists may represent a effective therapeutic approaches for substances use disorder. Moreover, the current literature suggests that NOP antagonists can be useful to treat depression and feeding-related diseases, such as obesity and binge eating behavior, whereas the activation of NOP receptor by agonists could be a promising tool for anxiety.


Asunto(s)
Péptidos Opioides/fisiología , Receptores Opioides/fisiología , Estrés Fisiológico/fisiología , Animales , Trastornos de Ansiedad/tratamiento farmacológico , Trastornos de Ansiedad/fisiopatología , Encéfalo/efectos de los fármacos , Encéfalo/fisiopatología , Trastornos de Alimentación y de la Ingestión de Alimentos/tratamiento farmacológico , Trastornos de Alimentación y de la Ingestión de Alimentos/fisiopatología , Humanos , Modelos Neurológicos , Trastornos del Humor/tratamiento farmacológico , Trastornos del Humor/fisiopatología , Péptidos Opioides/agonistas , Péptidos Opioides/antagonistas & inhibidores , Recompensa , Estrés Fisiológico/efectos de los fármacos , Trastornos Relacionados con Sustancias/tratamiento farmacológico , Trastornos Relacionados con Sustancias/fisiopatología , Receptor de Nociceptina , Nociceptina
12.
Neuropsychopharmacology ; 46(12): 2121-2131, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34285372

RESUMEN

In patients suffering from alcohol use disorder (AUD), stress and environmental stimuli associated with alcohol availability are important triggers of relapse. Activation of the nociceptin opioid peptide (NOP) receptor by its endogenous ligand Nociceptin/Orphanin FQ (N/OFQ) attenuates alcohol drinking and relapse in rodents, suggesting that NOP agonists may be efficacious in treating AUD. Intriguingly, recent data demonstrated that also blockade of NOP receptor reduced alcohol drinking in rodents. To explore further the potential of NOP antagonism, we investigated its effects on the reinstatement of alcohol-seeking elicited by administration of the α2 antagonist yohimbine (1.25 mg/kg, i.p.) or by environmental conditioning factors in male and female genetically selected alcohol-preferring Marchigian Sardinian (msP) rats. The selective NOP receptor antagonist LY2817412 (0.0, 3.0, 10.0, and 30.0 mg/kg) was first tested following oral (p.o.) administration. We then investigated the effects of LY2817412 (1.0, 3.0, 6.0 µg/µl/rat) microinjected into three candidate mesolimbic brain regions: the ventral tegmental area (VTA), the central nucleus of the amygdala (CeA), and the nucleus accumbens (NAc). We found that relapse to alcohol seeking was generally stronger in female than in male rats and oral administration of LY2817412 reduced yohimbine- and cue-induced reinstatement in both sexes. Following site-specific microinjections, LY2817412 reduced yohimbine-induced reinstatement of alcohol-seeking when administered into the VTA and the CeA, but not in the NAc. Cue-induced reinstatement was suppressed only when LY2817412 was microinjected into the VTA. Infusions of LY2817412 into the VTA and the CeA did not alter saccharin self-administration. These results demonstrate that NOP receptor blockade prevents the reinstatement of alcohol-seeking through modulation of mesolimbic system circuitry, providing further evidence of the therapeutic potential of NOP receptor antagonism in AUD.


Asunto(s)
Alcoholismo , Péptidos Opioides , Receptores Opioides/metabolismo , Consumo de Bebidas Alcohólicas , Animales , Etanol , Femenino , Humanos , Masculino , Antagonistas de Narcóticos/farmacología , Ratas , Autoadministración , Receptor de Nociceptina
13.
Br J Pharmacol ; 177(7): 1525-1537, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31713848

RESUMEN

BACKGROUND AND PURPOSE: Nociceptin/orphanin FQ (N/OFQ) peptide and its cognate receptor (NOP) are widely expressed in mesolimbic brain regions where they play an important role in modulating reward and motivation. Early evidence suggested that NOP receptor activation attenuates the rewarding effects of drugs of abuse, including alcohol. However, emerging data indicate that NOP receptor blockade also effectively attenuates alcohol drinking and relapse. To advance our understanding of the role of the N/OFQ-NOP receptor system in alcohol abuse, we examined the effect of NOP receptor blockade on voluntary alcohol drinking at the neurocircuitry level. EXPERIMENTAL APPROACH: Using male and female genetically selected alcohol-preferring Marchigian Sardinian (msP) rats, we initially evaluated the effects of the selective NOP receptor antagonist LY2817412 (3, 10, and 30 mg·kg-1 , p.o.) on alcohol consumption in a two-bottle free-choice paradigm. We then microinjected LY2817412 (3 and 6 µg·µl-1 per rat) in the central nucleus of the amygdala (CeA), ventral tegmental area (VTA), and nucleus accumbens (NAc). KEY RESULTS: Peripheral LY2817412 administration dose-dependently and selectively reduced voluntary alcohol intake in male and female msP rats. Central injections of LY2817412 markedly attenuated voluntary alcohol intake in both sexes following administration in the CeA and VTA but not in the NAc. CONCLUSION AND IMPLICATIONS: The present results revealed that the CeA and VTA are neuroanatomical substrates that mediate the effects of NOP receptor antagonism on alcohol consumption. Overall, our findings support the potential of NOP receptor antagonism as a treatment strategy to attenuate alcohol use and addiction.


Asunto(s)
Núcleo Amigdalino Central , Preparaciones Farmacéuticas , Consumo de Bebidas Alcohólicas , Animales , Núcleo Amigdalino Central/metabolismo , Femenino , Masculino , Péptidos Opioides/metabolismo , Ratas , Receptores Opioides/metabolismo , Área Tegmental Ventral/metabolismo
14.
Front Cell Neurosci ; 13: 479, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31708750

RESUMEN

Prenatal exposure to the antiepileptic drug valproic acid (VPA) induces autism spectrum disorder (ASD) in humans and autistic-like behaviors in rodents, which makes it a good model to study the neural underpinnings of ASD. Rats prenatally exposed to VPA show profound deficits in the social domain. The altered social behavior displayed by VPA-exposed rats may be due to either a deficit in social reward processing or to a more general inability to properly understand and respond to social signals. To address this issue, we performed behavioral, electrophysiological and neurochemical experiments and tested the involvement of the brain reward system in the social dysfunctions displayed by rats prenatally exposed to VPA (500 mg/kg). We found that, compared to control animals, VPA-exposed rats showed reduced play responsiveness together with impaired sociability in the three-chamber test and altered social discrimination abilities. In addition, VPA-exposed rats showed altered expression of dopamine receptors together with inherent hyperexcitability of medium spiny neurons (MSNs) in the nucleus accumbens (NAc). However, when tested for socially-induced conditioned place preference, locomotor response to amphetamine and sucrose preference, control and VPA-exposed rats performed similarly, indicating normal responses to social, drug and food rewards. On the basis of the results obtained, we hypothesize that social dysfunctions displayed by VPA-exposed rats are more likely caused by alterations in cognitive aspects of the social interaction, such as the interpretation and reciprocation of social stimuli and/or the ability to adjust the social behavior of the individual to the changing circumstances in the social and physical environment, rather than to inability to enjoy the pleasurable aspects of the social interaction. The observed neurochemical and electrophysiological alterations in the NAc may contribute to the inability of VPA-exposed rats to process and respond to social cues, or, alternatively, represent a compensatory mechanism towards VPA-induced neurodevelopmental insults.

15.
PLoS One ; 14(7): e0219522, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31291348

RESUMEN

Across species, motivated states such as food-seeking and consumption are essential for survival. The lateral hypothalamus (LH) is known to play a fundamental role in regulating feeding and reward-related behaviors. However, the contributions of neuronal subpopulations in the LH have not been thoroughly identified. Here we examine how lateral hypothalamic leptin receptor-expressing (LHLEPR) neurons, a subset of GABAergic cells, regulate motivation in mice. We find that LHLEPR neuronal activation significantly increases progressive ratio (PR) performance, while inhibition decreases responding. Moreover, we mapped LHLEPR axonal projections and demonstrated that they target the ventral tegmental area (VTA), form functional inhibitory synapses with non-dopaminergic VTA neurons, and their activation promotes motivation for food. Finally, we find that LHLEPR neurons also regulate motivation to obtain water, suggesting that they may play a generalized role in motivation. Together, these results identify LHLEPR neurons as modulators within a hypothalamic-ventral tegmental circuit that gates motivation.


Asunto(s)
Área Hipotalámica Lateral/fisiología , Motivación/fisiología , Área Tegmental Ventral/fisiología , Animales , Condicionamiento Operante/fisiología , Conducta Alimentaria/psicología , Femenino , Área Hipotalámica Lateral/citología , Masculino , Ratones , Modelos Animales , Vías Nerviosas/fisiología , Neuronas/fisiología , Recompensa , Técnicas Estereotáxicas , Sinapsis , Área Tegmental Ventral/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA