Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Neuron ; 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39406239

RESUMEN

Human-specific (HS) genes have been implicated in brain evolution, but their impact on human neuron development and diseases remains unclear. Here, we study SRGAP2B/C, two HS gene duplications of the ancestral synaptic gene SRGAP2A, in human cortical pyramidal neurons (CPNs) xenotransplanted in the mouse cortex. Downregulation of SRGAP2B/C in human CPNs led to strongly accelerated synaptic development, indicating their requirement for the neoteny that distinguishes human synaptogenesis. SRGAP2B/C genes promoted neoteny by reducing the synaptic levels of SRGAP2A,thereby increasing the postsynaptic accumulation of the SYNGAP1 protein, encoded by a major intellectual disability/autism spectrum disorder (ID/ASD) gene. Combinatorial loss-of-function experiments in vivo revealed that the tempo of synaptogenesis is set by the reciprocal antagonism between SRGAP2A and SYNGAP1, which in human CPNs is tipped toward neoteny by SRGAP2B/C. Thus, HS genes can modify the phenotypic expression of genetic mutations leading to ID/ASD through the regulation of human synaptic neoteny.

2.
Cell Rep ; 37(3): 109828, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34686348

RESUMEN

Synaptic connectivity within adult circuits exhibits a remarkable degree of cellular and subcellular specificity. We report that the axon guidance receptor Robo2 plays a role in establishing synaptic specificity in hippocampal CA1. In vivo, Robo2 is present and required postsynaptically in CA1 pyramidal neurons (PNs) for the formation of excitatory (E) but not inhibitory (I) synapses, specifically in proximal but not distal dendritic compartments. In vitro approaches show that the synaptogenic activity of Robo2 involves a trans-synaptic interaction with presynaptic Neurexins, as well as binding to its canonical extracellular ligand Slit. In vivo 2-photon Ca2+ imaging of CA1 PNs during spatial navigation in awake behaving mice shows that preventing Robo2-dependent excitatory synapse formation cell autonomously during development alters place cell properties of adult CA1 PNs. Our results identify a trans-synaptic complex linking the establishment of synaptic specificity to circuit function.


Asunto(s)
Región CA1 Hipocampal/metabolismo , Células Piramidales/metabolismo , Receptores Inmunológicos/metabolismo , Sinapsis/metabolismo , Animales , Región CA1 Hipocampal/citología , Región CA3 Hipocampal/citología , Región CA3 Hipocampal/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Potenciales Postsinápticos Excitadores , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Moléculas de Adhesión de Célula Nerviosa/genética , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Células de Lugar/metabolismo , Receptores Inmunológicos/genética , Proteínas Roundabout
3.
Front Aging Neurosci ; 13: 786897, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35058771

RESUMEN

The etiology of aging-associated neurodegenerative diseases (NDs), such as Parkinson's disease (PD) and Alzheimer's disease (AD), still remains elusive and no curative treatment is available. Age is the major risk factor for PD and AD, but the molecular link between aging and neurodegeneration is not fully understood. Aging is defined by several hallmarks, some of which partially overlap with pathways implicated in NDs. Recent evidence suggests that aging-associated epigenetic alterations can lead to the derepression of the LINE-1 (Long Interspersed Element-1) family of transposable elements (TEs) and that this derepression might have important implications in the pathogenesis of NDs. Almost half of the human DNA is composed of repetitive sequences derived from TEs and TE mobility participated in shaping the mammalian genomes during evolution. Although most TEs are mutated and no longer mobile, more than 100 LINE-1 elements have retained their full coding potential in humans and are thus retrotransposition competent. Uncontrolled activation of TEs has now been reported in various models of neurodegeneration and in diseased human brain tissues. We will discuss in this review the potential contribution of LINE-1 elements in inducing DNA damage and genomic instability, which are emerging pathological features in NDs. TEs might represent an important molecular link between aging and neurodegeneration, and a potential target for urgently needed novel therapeutic disease-modifying interventions.

4.
EMBO J ; 37(15)2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29941661

RESUMEN

LINE-1 mobile genetic elements have shaped the mammalian genome during evolution. A minority of them have escaped fossilization which, when activated, can threaten genome integrity. We report that LINE-1 are expressed in substantia nigra ventral midbrain dopaminergic neurons, a class of neurons that degenerate in Parkinson's disease. In Engrailed-1 heterozygotes, these neurons show a progressive degeneration that starts at 6 weeks of age, coinciding with an increase in LINE-1 expression. Similarly, DNA damage and cell death, induced by an acute oxidative stress applied to embryonic midbrain neurons in culture or to adult midbrain dopaminergic neurons in vivo, are accompanied by enhanced LINE-1 expression. Reduction of LINE-1 activity through (i) direct transcriptional repression by Engrailed, (ii) a siRNA directed against LINE-1, (iii) the nucleoside analogue reverse transcriptase inhibitor stavudine, and (iv) viral Piwil1 expression, protects against oxidative stress in vitro and in vivo We thus propose that LINE-1 overexpression triggers oxidative stress-induced DNA strand breaks and that an Engrailed adult function is to protect mesencephalic dopaminergic neurons through the repression of LINE-1 expression.


Asunto(s)
Roturas del ADN , Neuronas Dopaminérgicas/patología , Proteínas de Homeodominio/genética , Elementos de Nucleótido Esparcido Largo/genética , Estrés Oxidativo/genética , Animales , Proteínas Argonautas/genética , Línea Celular , Daño del ADN/genética , Neuronas Dopaminérgicas/metabolismo , Células HEK293 , Humanos , Ratones , Ratones Transgénicos , Interferencia de ARN , ARN Interferente Pequeño/genética , Elementos Reguladores de la Transcripción/genética , Sustancia Negra/metabolismo
5.
Sci Rep ; 6: 36952, 2016 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-27841340

RESUMEN

In earlier studies, we showed that ATF4 down-regulation affects post-synaptic development and dendritic spine morphology in neurons through increased turnover of the Rho GTPase Cell Division Cycle 42 (Cdc42) protein. Here, we find that ATF4 down-regulation in both hippocampal and cortical neuron cultures reduces protein and message levels of RhoGDIα, a stabilizer of the Rho GTPases including Cdc42. This effect is rescued by an shATF4-resistant active form of ATF4, but not by a mutant that lacks transcriptional activity. This is, at least in part, due to the fact that Arhgdia, the gene encoding RhoGDIα, is a direct transcriptional target of ATF4 as is shown in ChIP assays. This pathway is not restricted to neurons. This is seen in an impairment of cell migration on ATF4 reduction in non-neuronal cells. In conclusion, we have identified a new cellular pathway in which ATF4 regulates the expression of RhoGDIα that in turn affects Rho GTPase protein levels, and thereby, controls cellular functions as diverse as memory and cell motility.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Corteza Cerebral/citología , Hipocampo/citología , Proteína de Unión al GTP cdc42/metabolismo , Inhibidor alfa de Disociación del Nucleótido Guanina rho/metabolismo , Animales , Células Cultivadas , Corteza Cerebral/metabolismo , Regulación hacia Abajo , Células HEK293 , Hipocampo/metabolismo , Humanos , Neuronas/metabolismo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA