Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
PLoS Pathog ; 20(9): e1012509, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39241103

RESUMEN

The replication organelle of hepatitis C virus (HCV), called membranous web, is derived from the endoplasmic reticulum (ER) and mainly comprises double membrane vesicles (DMVs) that concentrate the viral replication complexes. It also tightly associates with lipid droplets (LDs), which are essential for virion morphogenesis. In particular acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1), a rate-limiting enzyme in triglyceride synthesis, promotes early steps of virus assembly. The close proximity between ER membranes, DMVs and LDs therefore permits the efficient coordination of the HCV replication cycle. Here, we demonstrate that exaggerated LD accumulation due to the excessive expression of the DGAT1 isozyme, DGAT2, dramatically impairs the formation of the HCV membranous web. This effect depended on the enzymatic activity and ER association of DGAT2, whereas the mere LD accumulation was not sufficient to hamper HCV RNA replication. Our lipidomics data indicate that both HCV infection and DGAT2 overexpression induced membrane lipid biogenesis and markedly increased phospholipids with long chain polyunsaturated fatty acids, suggesting a dual use of these lipids and their possible competition for LD and DMV biogenesis. On the other hand, overexpression of DGAT2 depleted specific phospholipids, particularly oleyl fatty acyl chain-containing phosphatidylcholines, which, in contrast, are increased in HCV-infected cells and likely essential for viral infection. In conclusion, our results indicate that lipid exchanges occurring during LD biogenesis regulate the composition of intracellular membranes and thereby affect the formation of the HCV replication organelle. The potent antiviral effect observed in our DGAT2 overexpression system unveils lipid flux that may be relevant in the context of steatohepatitis, a hallmark of HCV infection, but also in physiological conditions, locally in specific subdomains of the ER membrane. Thus, LD formation mediated by DGAT1 and DGAT2 might participate in the spatial compartmentalization of HCV replication and assembly factories within the membranous web.

2.
Liver Int ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39175256

RESUMEN

BACKGROUND AND AIMS: Severe acute respiratory syndrome coronavirus (SARS-CoV-2) preferentially infects the respiratory tract; however, several studies have implicated a multi-organ involvement. Hepatic dysfunctions caused by SARS-CoV-2 infection have been increasingly recognized and described to correlate with disease severity. To elucidate molecular factors that could contribute towards hepatic infection, we concentrated on microRNAs (miRNAs), a class of small non-coding RNAs that modulate various cellular processes and which are reported to be differentially regulated during liver injury. We aimed to study the infection of primary human hepatocytes (PHH) with SARS-CoV-2 and to evaluate the potential of miRNAs for modulating viral infection. METHODS: We analysed liver autopsies from a coronavirus disease 19 (COVID-19)-positive cohort for the presence of viral RNA using Nanopore sequencing. PHH were used for the infection with SARS-CoV-2. The candidate miRNAs targeting angiotensin converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) were identified using in silico approaches. To discover the potential regulatory mechanism, transfection experiments, qRT-PCRs, western blots and luciferase reporter assays were performed. RESULTS: We could detect SARS-CoV-2 RNA in COVID-19-positive liver autopsies. We show that PHH express ACE2 and TMPRSS2 and can be readily infected with SARS-CoV-2, resulting in robust replication. Transfection of selected miRNA mimics reduced SARS-CoV-2 receptor expression and SARS-CoV-2 burden in PHH. In silico and biochemical analyses supported a potential direct binding of miR-141-3p to the SARS-CoV-2 genome. CONCLUSION: We confirm that PHH are susceptible to SARS-CoV-2 infection and demonstrate selected miRNAs targeting SARS-CoV-2 entry factors and/or the viral genome reduce viral loads. These data provide novel insights into hepatic susceptibility to SARS-CoV-2 and associated dysfunctions in COVID-19.

3.
Curr Opin Microbiol ; 81: 102523, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39098125
4.
Front Immunol ; 15: 1386586, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38779663

RESUMEN

Background: Sepsis, a life-threatening condition caused by the dysregulated host response to infection, is a major global health concern. Understanding the impact of viral or bacterial pathogens in sepsis is crucial for improving patient outcomes. This study aimed to investigate the human cytomegalovirus (HCMV) seropositivity as a risk factor for development of sepsis in patients with COVID-19. Methods: A multicenter observational study enrolled 95 intensive care patients with COVID-19-induced sepsis and 80 post-surgery individuals as controls. HCMV serostatus was determined using an ELISA test. Comprehensive clinical data, including demographics, comorbidities, and 30-day mortality, were collected. Statistical analyses evaluated the association between HCMV seropositivity and COVID-19 induced sepsis. Results: The prevalence of HCMV seropositivity did not significantly differ between COVID-19-induced sepsis patients (78%) and controls (71%, p = 0.382) in the entire cohort. However, among patients aged ≤60 years, HCMV seropositivity was significantly higher in COVID-19 sepsis patients compared to controls (86% vs 61%, respectively; p = 0.030). Nevertheless, HCMV serostatus did not affect 30-day survival. Discussion: These findings confirm the association between HCMV seropositivity and COVID-19 sepsis in non-geriatric patients. However, the lack of an independent effect on 30-day survival can be explained by the cross-reactivity of HCMV specific CD8+ T-cells towards SARS-CoV-2 peptides, which might confer some protection to HCMV seropositive patients. The inclusion of a post-surgery control group strengthens the generalizability of the findings. Further research is needed to elucidate the underlying mechanisms of this association, explore different patient populations, and identify interventions for optimizing patient management. Conclusion: This study validates the association between HCMV seropositivity and severe COVID-19-induced sepsis in non-geriatric patients, contributing to the growing body of evidence on viral pathogens in sepsis. Although HCMV serostatus did not independently influence 30-day survival, future investigations should focus on unraveling the intricate interplay between HCMV, immune responses, and COVID-19. These insights will aid in risk stratification and the development of targeted interventions for viral sepsis.


Asunto(s)
COVID-19 , Infecciones por Citomegalovirus , Citomegalovirus , SARS-CoV-2 , Sepsis , Humanos , COVID-19/inmunología , COVID-19/mortalidad , COVID-19/epidemiología , COVID-19/complicaciones , Masculino , Femenino , Persona de Mediana Edad , Sepsis/inmunología , Sepsis/epidemiología , Sepsis/mortalidad , Citomegalovirus/inmunología , Anciano , Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/epidemiología , Infecciones por Citomegalovirus/mortalidad , Infecciones por Citomegalovirus/complicaciones , SARS-CoV-2/inmunología , Factores de Riesgo , Adulto , Anticuerpos Antivirales/sangre
5.
Proc Natl Acad Sci U S A ; 121(23): e2407437121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38814864

RESUMEN

The accessory protease transmembrane protease serine 2 (TMPRSS2) enhances severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uptake into ACE2-expressing cells, although how increased entry impacts downstream viral and host processes remains unclear. To investigate this in more detail, we performed infection assays in engineered cells promoting ACE2-mediated entry with and without TMPRSS2 coexpression. Electron microscopy and inhibitor experiments indicated TMPRSS2-mediated cell entry was associated with increased virion internalization into endosomes, and partially dependent upon clathrin-mediated endocytosis. TMPRSS2 increased panvariant uptake efficiency and enhanced early rates of virus replication, transcription, and secretion, with variant-specific profiles observed. On the host side, transcriptional profiling confirmed the magnitude of infection-induced antiviral and proinflammatory responses were linked to uptake efficiency, with TMPRSS2-assisted entry boosting early antiviral responses. In addition, TMPRSS2-enhanced infections increased rates of cytopathology, apoptosis, and necrosis and modulated virus secretion kinetics in a variant-specific manner. On the virus side, convergent signatures of cell-uptake-dependent innate immune induction were recorded in viral genomes, manifesting as switches in dominant coupled Nsp3 residues whose frequencies were correlated to the magnitude of the cellular response to infection. Experimentally, we demonstrated that selected Nsp3 mutations conferred enhanced interferon antagonism. More broadly, we show that TMPRSS2 orthologues from evolutionarily diverse mammals facilitate panvariant enhancement of cell uptake. In summary, our study uncovers previously unreported associations, linking cell entry efficiency to innate immune activation kinetics, cell death rates, virus secretion dynamics, and convergent selection of viral mutations. These data expand our understanding of TMPRSS2's role in the SARS-CoV-2 life cycle and confirm its broader significance in zoonotic reservoirs and animal models.


Asunto(s)
COVID-19 , Inmunidad Innata , SARS-CoV-2 , Serina Endopeptidasas , Internalización del Virus , SARS-CoV-2/inmunología , SARS-CoV-2/fisiología , SARS-CoV-2/metabolismo , Humanos , Serina Endopeptidasas/metabolismo , Serina Endopeptidasas/genética , COVID-19/virología , COVID-19/inmunología , COVID-19/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Replicación Viral , Animales , Endocitosis , Células HEK293 , Chlorocebus aethiops , Citología
6.
Eur J Cell Biol ; 103(2): 151408, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38583306

RESUMEN

BACKGROUND: Therapeutic options for steroid-resistant non-type 2 inflammation in obstructive lung diseases are limited. Bronchial epithelial cells are key in the pathogenesis by releasing the central proinflammatory cytokine interleukine-8 (IL-8). Olfactory receptors (ORs) are expressed in various cell types. This study examined the drug target potential of ORs by investigating their impact on associated pathophysiological processes in lung epithelial cells. METHODS: Experiments were performed in the A549 cell line and in primary human bronchial epithelial cells. OR expression was investigated using RT-PCR, Western blot, and immunocytochemical staining. OR-mediated effects were analyzed by measuring 1) intracellular calcium concentration via calcium imaging, 2) cAMP concentration by luminescence-based assays, 3) wound healing by scratch assays, 4) proliferation by MTS-based assays, 5) cellular vitality by Annexin V/PI-based FACS staining, and 6) the secretion of IL-8 in culture supernatants by ELISA. RESULTS: By screening 100 potential OR agonists, we identified two, Brahmanol and Cinnamaldehyde, that increased intracellular calcium concentrations. The mRNA and proteins of the corresponding receptors OR2AT4 and OR2J3 were detected. Stimulation of OR2J3 with Cinnamaldehyde reduced 1) IL-8 in the absence and presence of bacterial and viral pathogen-associated molecular patterns (PAMPs), 2) proliferation, and 3) wound healing but increased cAMP. In contrast, stimulation of OR2AT4 by Brahmanol increased wound healing but did not affect cAMP and proliferation. Both ORs did not influence cell vitality. CONCLUSION: ORs might be promising drug target candidates for lung diseases with non-type 2 inflammation. Their stimulation might reduce inflammation or prevent tissue remodeling by promoting wound healing.


Asunto(s)
Bronquios , Células Epiteliales , Receptores Odorantes , Humanos , Células Epiteliales/metabolismo , Receptores Odorantes/metabolismo , Receptores Odorantes/genética , Bronquios/metabolismo , Bronquios/patología , Células A549 , Interleucina-8/metabolismo , Calcio/metabolismo , Enfermedades Pulmonares/metabolismo , Enfermedades Pulmonares/patología , Proliferación Celular , Acroleína/análogos & derivados , Acroleína/farmacología
7.
Curr Opin Microbiol ; 79: 102455, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38522265

RESUMEN

Hepatic sequelae are frequently reported in coronavirus disease 2019 cases and are correlated with increased disease severity. Therefore, a detailed exploration of host factors contributing to hepatic impairment and ultimately infection outcomes in patients is essential for improved clinical management. The causes of hepatic injury are not limited to drug-mediated toxicity or aberrant host inflammatory responses. Indeed, multiple studies report the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in liver autopsies and the susceptibility of explanted human hepatocytes to infection. In this review, we confirm that hepatic cells express an extensive range of factors implicated in SARS-CoV-2 entry. We also provide an overview of studies reporting evidence for direct infection of liver cell types and the infection-induced cell-intrinsic processes that likely contribute to hepatic impairment.


Asunto(s)
COVID-19 , Hepatocitos , Hígado , SARS-CoV-2 , Tropismo Viral , Internalización del Virus , Humanos , SARS-CoV-2/fisiología , SARS-CoV-2/patogenicidad , COVID-19/virología , Hígado/virología , Hígado/patología , Hepatocitos/virología , Interacciones Huésped-Patógeno , Animales
8.
Pediatr Allergy Immunol ; 34(12): e14060, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38146118

RESUMEN

BACKGROUND: A proportion of the convalescent SARS-CoV-2 pediatric population presents nonspecific symptoms, mental health problems, and a reduction in quality of life similar to myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and long COVID-19 symptomatic. However, data regarding its clinical manifestation and immune mechanisms are currently scarce. METHODS: In this study, we perform a comprehensive clinical and immunological profiling of 17 convalescent COVID-19 children with post-acute COVID-19 sequelae (PASC) manifestation and 13 convalescent children without PASC manifestation. A detailed medical history, blood and instrumental tests, and physical examination were obtained from all patients. SARS-CoV-2 reactive T-cell response was analyzed via multiparametric flow cytometry and the humoral immunity was addressed via pseudovirus neutralization and ELISA assay. RESULTS: The most common PASC symptoms were shortness of breath/exercise intolerance, paresthesia, smell/taste disturbance, chest pain, dyspnea, headache, and lack of concentration. Blood count and clinical chemistry showed no statistical differences among the study groups. We detected higher frequencies of spike (S) reactive CD4+ and CD8+ T cells among the PASC study group, characterized by TNFα and IFNγ production and low functional avidity. CRP levels are positively correlated with IFNγ producing reactive CD8+ T cells. CONCLUSIONS: Our data might indicate a possible involvement of a persistent cellular inflammatory response triggered by SARS-CoV-2 in the development of the observed sequelae in pediatric PASC. These results may have implications on future therapeutic and prevention strategies.


Asunto(s)
COVID-19 , Síndrome Post Agudo de COVID-19 , Humanos , Niño , SARS-CoV-2 , Citocinas , Linfocitos T CD8-positivos , Calidad de Vida , Progresión de la Enfermedad , Disnea
10.
BMC Infect Dis ; 23(1): 818, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37993788

RESUMEN

Cross-reactive cellular and humoral immunity can substantially contribute to antiviral defense against SARS-CoV-2 variants of concern (VOC). While the adult SARS-CoV-2 cellular and humoral immunity and its cross-recognition potential against VOC is broadly analyzed, similar data regarding the pediatric population are missing. In this study, we perform an analysis of the humoral and cellular SARS-CoV-2 response immune of 32 convalescent COVID-19 children (children), 27 convalescent vaccinated adults(C + V+) and 7 unvaccinated convalescent adults (C + V-). Similarly to adults, a significant reduction of cross-reactive neutralizing capacity against delta and omicron VOC was observed 6 months after SARS-CoV-2 infection. While SAR-CoV-2 neutralizing capacity was comparable among children and C + V- against all VOC, children demonstrated as expected an inferior humoral response when compared to C + V+. Nevertheless, children generated SARS-CoV-2 reactive T cells with broad cross-recognition potential. When compared to V + C+, children presented even comparable frequencies of WT-reactive CD4 + and CD8 + T cells with high avidity and functionality. Taking into consideration the limitations of study - unknown disease onset for 53% of the asymptomatic pediatric subjects, serological detection of SARS-CoV-2 infection-, our results suggest that following SARS-CoV-2 infection children generate a humoral SARS-CoV-2 response with neutralizing potential comparable to unvaccinated COVID-19 convalescent adults as well a sustained SARS-CoV-2 cellular response cross-reactive to VOC.


Asunto(s)
COVID-19 , SARS-CoV-2 , Adulto , Niño , Adolescente , Humanos , Inmunidad Celular , Linfocitos T CD8-positivos , Inmunidad Humoral , Anticuerpos Antivirales , Anticuerpos Neutralizantes
11.
Front Microbiol ; 14: 1196721, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37333646

RESUMEN

The role of adaptive SARS-CoV-2 specific immunity in post-acute sequelae of COVID-19 (PASC) is not well explored, although a growing population of convalescent COVID-19 patients with manifestation of PASC is observed. We analyzed the SARS-CoV-2-specific immune response, via pseudovirus neutralizing assay and multiparametric flow cytometry in 40 post-acute sequelae of COVID-19 patients with non-specific PASC manifestation and 15 COVID-19 convalescent healthy donors. Although frequencies of SARS-CoV-2-reactive CD4+ T cells were similar between the studied cohorts, a stronger SARS-CoV-2 reactive CD8+ T cell response, characterized by IFNγ production and predominant TEMRA phenotype but low functional TCR avidity was detected in PASC patients compared to controls. Of interest, high avidity SARS-CoV-2-reactive CD4+ and CD8+ T cells were comparable between the groups demonstrating sufficient cellular antiviral response in PASC. In line with the cellular immunity, neutralizing capacity in PASC patients was not inferior compared to controls. In conclusion, our data suggest that PASC may be driven by an inflammatory response triggered by an expanded population of low avidity SARS-CoV-2 reactive pro-inflammatory CD8+ T cells. These pro-inflammatory T cells with TEMRA phenotype are known to be activated by a low or even without TCR stimulation and lead to a tissue damage. Further studies including animal models are required for a better understanding of underlying immunopathogensis. Summary: A CD8+ driven persistent inflammatory response triggered by SARS-CoV-2 may be responsible for the observed sequelae in PASC patients.

12.
J Cancer Res Clin Oncol ; 149(12): 10633-10644, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37300723

RESUMEN

PURPOSE: The SARS-CoV-2 Omicron variant of concern (VOC) and subvariants like BQ.1.1 demonstrate immune evasive potential. Little is known about the efficacy of booster vaccinations regarding this VOC and subvariants in cancer patients. This study is among the first to provide data on neutralizing antibodies (nAb) against BQ.1.1. METHODS: Cancer patients at our center were prospectively enrolled between 01/2021 and 02/2022. Medical data and blood samples were collected at enrollment and before and after every SARS-CoV-2 vaccination, at 3 and 6 months. RESULTS: We analyzed 408 samples from 148 patients (41% female), mainly with solid tumors (85%) on active therapy (92%; 80% chemotherapy). SARS-CoV-2 IgG and nAb titers decreased over time, however, significantly increased following third vaccination (p < 0.0001). NAb (ND50) against Omicron BA.1 was minimal prior and increased significantly after the third vaccination (p < 0.0001). ND50 titers against BQ.1.1 after the third vaccination were significantly lower than against BA.1 and BA.4/5 (p < 0.0001) and undetectable in half of the patients (48%). Factors associated with impaired immune response were hematologic malignancies, B cell depleting therapy and higher age. Choice of vaccine, sex and treatment with chemo-/immunotherapy did not influence antibody response. Patients with breakthrough infections had significantly lower nAb titers after both 6 months (p < 0.001) and the third vaccination (p = 0.018). CONCLUSION: We present the first data on nAb against BQ.1.1 following the third vaccination in cancer patients. Our results highlight the threat that new emerging SARS-CoV-2 variants pose to cancer patients and support efforts to apply repeated vaccines. Since a considerable number of patients did not display an adequate immune response, continuing to exhibit caution remains reasonable.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Neoplasias , Femenino , Humanos , Masculino , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Neoplasias/complicaciones , SARS-CoV-2 , Vacunación
16.
Autophagy ; 19(2): 731-733, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35875965

RESUMEN

The recurrence of zoonotic transmission events highlights the need for novel treatment strategies against emerging coronaviruses (CoVs), namely SARS-CoV, MERS-CoV and most notably SARS-CoV-2. Our recently performed genome-wide CRISPR knockout screen revealed a list of conserved pan-coronavirus as well as MERS-CoV or HCoV-229E-specific host dependency factors (HDF) essential during the viral life cycle. Intriguingly, we identified the macroautophagy/autophagy pathway-regulating immunophilins FKBP8, TMEM41B, and MINAR1 as conserved MERS-CoV, HCoV-229E, SARS-CoV, and SARS-CoV-2 host factors, which further constitute potential targets for therapeutic intervention by clinically approved drugs.


Asunto(s)
Autofagia , Factores Celulares Derivados del Huésped , Inmunofilinas , Replicación Viral , Humanos , COVID-19 , Coronavirus del Síndrome Respiratorio de Oriente Medio , SARS-CoV-2 , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Coronavirus Humano 229E
17.
J Cancer Res Clin Oncol ; 149(5): 1985-1992, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35731276

RESUMEN

PURPOSE: Refusal to receive SARS-CoV-2 vaccination poses a threat to fighting the COVID-19 pandemic. Little is known about German cancer patients' attitude towards and experience with SARS-CoV-2 vaccination. METHODS: Patients were enrolled between 04-11/2021. They completed a baseline questionnaire (BLQ) containing multiple choice questions and Likert items ranging from 1 ("totally disagree") to 11 ("totally agree") regarding their attitude towards vaccination and COVID-19. A follow-up questionnaire (FUQ) was completed after vaccination. RESULTS: 218 patients (43% female) completed BLQ (110 FUQ; 48% female). Most patients agreed to "definitely get vaccinated" (82%) and disagreed with "SARS-CoV-2 vaccination is dispensable due to COVID-19 being no serious threat" (82%; more dissent among men, p = 0.05). Self-assessment as a member of a risk group (p = 0.03) and fear of COVID-19 (p = 0.002) were more common among women. Fear of side effects was more common among women (p = 0.002) and patients with solid or GI tumors (p = 0.03; p < 0.0001). At FUQ, almost all (91%) reported their vaccination to be well tolerated, especially men (p = 0.001). High tolerability correlated with confidence in the vaccine being safe (r = 0.305, p = 0.003). Most patients would agree to get it yearly (78%). After vaccination, patients felt safe meeting friends/family (91%) or shopping (62%). Vacation (32%) or work (22%) were among others considered less safe (less frequent among men, p < 0.05). CONCLUSION: Acceptance of SARS-CoV-2 vaccination is high and it is well tolerated in this sensitive cohort. However, concerns about vaccine safety remain. Those and gender differences need to be addressed. Our results help identify patients that benefit from pre-vaccination consultation.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Conocimientos, Actitudes y Práctica en Salud , Neoplasias , Vacunación , Femenino , Humanos , Masculino , COVID-19/epidemiología , COVID-19/prevención & control , Pandemias , Percepción , SARS-CoV-2 , Vacunación/psicología , Alemania
20.
Front Immunol ; 13: 1049070, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36532034

RESUMEN

Despite the development of vaccines, which protect healthy people from severe and life-threatening Covid-19, the immunological responses of people with secondary immunodeficiencies to these vaccines remain incompletely understood. Here, we investigated the humoral and cellular immune responses elicited by mRNA-based SARS-CoV-2 vaccines in a cohort of people living with HIV (PLWH) receiving anti-retroviral therapy. While antibody responses in PLWH increased progressively after each vaccination, they were significantly reduced compared to the HIV-negative control group. This was particularly noteworthy for the Delta and Omicron variants. In contrast, CD4+ Th cell responses exhibited a vaccination-dependent increase, which was comparable in both groups. Interestingly, CD4+ T cell activation negatively correlated with the CD4 to CD8 ratio, indicating that low CD4+ T cell numbers do not necessarily interfere with cellular immune responses. Our data demonstrate that despite the lower CD4+ T cell counts SARS-CoV-2 vaccination results in potent cellular immune responses in PLWH. However, the reduced humoral response also provides strong evidence to consider PLWH as vulnerable group and suggests subsequent vaccinations being required to enhance their protection against COVID-19.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , SARS-CoV-2 , COVID-19/prevención & control , Vacunación , Activación de Linfocitos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA