RESUMEN
Key mechanisms underlying chronic pain occur within the dorsal horn. Genome-wide association studies (GWASs) have identified genetic variants predisposed to chronic pain. However, most of these variants lie within regulatory non-coding regions that have not been linked to spinal cord biology. Here, we take a multi-species approach to determine whether chronic pain variants impact the regulatory genomics of dorsal horn neurons. First, we generate a large rhesus macaque single-nucleus RNA sequencing (snRNA-seq) atlas and integrate it with available human and mouse datasets to produce a single unified, species-conserved atlas of neuron subtypes. Cellular-resolution spatial transcriptomics in mouse shows the precise laminar location of these neuron subtypes, consistent with our analysis of neuron-subtype-selective markers in macaque. Using this cross-species framework, we generate a mouse single-nucleus open chromatin atlas of regulatory elements that shows strong and selective relationships between the neuron-subtype-specific chromatin regions and variants from major chronic pain GWASs.
RESUMEN
Comparative genomics approaches seek to associate molecular evolution with the evolution of phenotypes across a phylogeny. Many of these methods lack the ability to analyze non-ordinal categorical traits with more than two categories. To address this limitation, we introduce an expansion to RERconverge that associates shifts in evolutionary rates with the convergent evolution of categorical traits. The categorical RERconverge expansion includes methods for performing categorical ancestral state reconstruction, statistical tests for associating relative evolutionary rates with categorical variables, and a new method for performing phylogeny-aware permutations, "permulations", on categorical traits. We demonstrate our new method on a three-category diet phenotype and we compare its performance to binary RERconverge analyses and two existing methods for comparative genomic analyses of categorical traits: phylogenetic simulations and a phylogenetic signal based method. We present an analysis of how the categorical permulations scale with the number of species and the number of categories included in the analysis. Our results show that our new categorical method outperforms phylogenetic simulations at identifying genes and enriched pathways significantly associated with the diet phenotypes and that the categorical ancestral state reconstruction drives an improvement in our ability to capture diet-related enriched pathways compared to binary RERconverge when implemented without user input on phenotype evolution. The categorical expansion to RERconverge will provide a strong foundation for applying the comparative method to categorical traits on larger data sets with more species and more complex trait evolution than have previously been analyzed.
RESUMEN
Alzheimer's disease (AD) involves aggregation of amyloid ß and tau, neuron loss, cognitive decline, and neuroinflammatory responses. Both resident microglia and peripheral immune cells have been associated with the immune component of AD. However, the relative contribution of resident and peripheral immune cell types to AD predisposition has not been thoroughly explored due to their similarity in gene expression and function. To study the effects of AD-associated variants on cis-regulatory elements, we train convolutional neural network (CNN) regression models that link genome sequence to cell type-specific levels of open chromatin, a proxy for regulatory element activity. We then use in silico mutagenesis of regulatory sequences to predict the relative impact of candidate variants across these cell types. We develop and apply criteria for evaluating our models and refine our models using massively parallel reporter assay (MPRA) data. Our models identify multiple AD-associated variants with a greater predicted impact in peripheral cells relative to microglia or neurons. Our results support their use as models to study the effects of AD-associated variants and even suggest that peripheral immune cells themselves may mediate a component of AD predisposition. We make our library of CNN models and predictions available as a resource for the community to study immune and neurological disorders.
Asunto(s)
Enfermedad de Alzheimer , Predisposición Genética a la Enfermedad , Redes Neurales de la Computación , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/inmunología , Humanos , Predisposición Genética a la Enfermedad/genética , Microglía/inmunología , Biología Computacional/métodos , NeuronasRESUMEN
Vocal production learning ("vocal learning") is a convergently evolved trait in vertebrates. To identify brain genomic elements associated with mammalian vocal learning, we integrated genomic, anatomical, and neurophysiological data from the Egyptian fruit bat (Rousettus aegyptiacus) with analyses of the genomes of 215 placental mammals. First, we identified a set of proteins evolving more slowly in vocal learners. Then, we discovered a vocal motor cortical region in the Egyptian fruit bat, an emergent vocal learner, and leveraged that knowledge to identify active cis-regulatory elements in the motor cortex of vocal learners. Machine learning methods applied to motor cortex open chromatin revealed 50 enhancers robustly associated with vocal learning whose activity tended to be lower in vocal learners. Our research implicates convergent losses of motor cortex regulatory elements in mammalian vocal learning evolution.
Asunto(s)
Elementos de Facilitación Genéticos , Euterios , Evolución Molecular , Regulación de la Expresión Génica , Corteza Motora , Neuronas Motoras , Proteínas , Vocalización Animal , Animales , Quirópteros/genética , Quirópteros/fisiología , Vocalización Animal/fisiología , Corteza Motora/citología , Corteza Motora/fisiología , Cromatina/metabolismo , Neuronas Motoras/fisiología , Laringe/fisiología , Epigénesis Genética , Genoma , Proteínas/genética , Proteínas/metabolismo , Secuencia de Aminoácidos , Euterios/genética , Euterios/fisiología , Aprendizaje AutomáticoRESUMEN
In brain, the striatum is a heterogenous region involved in reward and goal-directed behaviors. Striatal dysfunction is linked to psychiatric disorders, including opioid use disorder (OUD). Striatal subregions are divided based on neuroanatomy, each with unique roles in OUD. In OUD, the dorsal striatum is involved in altered reward processing, formation of habits, and development of negative affect during withdrawal. Using single nuclei RNA-sequencing, we identified both canonical (e.g., dopamine receptor subtype) and less abundant cell populations (e.g., interneurons) in human dorsal striatum. Pathways related to neurodegeneration, interferon response, and DNA damage were significantly enriched in striatal neurons of individuals with OUD. DNA damage markers were also elevated in striatal neurons of opioid-exposed rhesus macaques. Sex-specific molecular differences in glial cell subtypes associated with chronic stress were found in OUD, particularly female individuals. Together, we describe different cell types in human dorsal striatum and identify cell type-specific alterations in OUD.
Asunto(s)
Cuerpo Estriado , Trastornos Relacionados con Opioides , Masculino , Animales , Humanos , Femenino , Macaca mulatta , Cuerpo Estriado/metabolismo , Neuronas/metabolismo , Trastornos Relacionados con Opioides/genética , Trastornos Relacionados con Opioides/metabolismo , Perfilación de la Expresión GénicaRESUMEN
Transcription factor 4 (TCF4) is a basic helix-loop-helix transcription factor that is implicated in a variety of psychiatric disorders including autism spectrum disorder (ASD), major depression, and schizophrenia. Autosomal dominant mutations in TCF4 are causal for a specific ASD called Pitt-Hopkins Syndrome (PTHS). However, our understanding of etiological and pathophysiological mechanisms downstream of TCF4 mutations is incomplete. Single cell sequencing indicates TCF4 is highly expressed in GABAergic interneurons (INs). Here, we performed cell-type specific expression analysis (CSEA) and cellular deconvolution (CD) on bulk RNA sequencing data from 5 different PTHS mouse models. Using CSEA we observed differentially expressed genes (DEGs) were enriched in parvalbumin expressing (PV+) INs and CD predicted a reduction in the PV+ INs population. Therefore, we investigated the role of TCF4 in regulating the development and function of INs in the Tcf4+/tr mouse model of PTHS. In Tcf4+/tr mice, immunohistochemical (IHC) analysis of subtype-specific IN markers and reporter mice identified reductions in PV+, vasoactive intestinal peptide (VIP+), and cortistatin (CST+) expressing INs in the cortex and cholinergic (ChAT+) INs in the striatum, with the somatostatin (SST+) IN population being spared. The reduction of these specific IN populations led to cell-type specific alterations in the balance of excitatory and inhibitory inputs onto PV+ and VIP+ INs and excitatory pyramidal neurons within the cortex. These data indicate TCF4 is a critical regulator of the development of specific subsets of INs and highlight the inhibitory network as an important source of pathophysiology in PTHS.
Asunto(s)
Trastorno del Espectro Autista , Animales , Ratones , Corteza Cerebral/metabolismo , Interneuronas/metabolismo , Mutación , Factor de Transcripción 4/genética , Factor de Transcripción 4/metabolismoRESUMEN
Striatal projection neurons (SPNs) are traditionally segregated into two subpopulations expressing dopamine (DA) D1-like or D2-like receptors. However, this dichotomy is challenged by recent evidence. Functional and expression studies raise important questions: do SPNs co-express different DA receptors, and do these differences reflect unique striatal spatial distributions and expression profiles? Using RNAscope in mouse striatum, we report heterogenous SPN subpopulations distributed across dorsal-ventral and rostral-caudal axes. SPN subpopulations co-express multiple DA receptors, including D1 and D2 (D1/2R) and D1 and D3. Our integrative approach using single-nuclei multi-omics analyses provides a simple consensus to describe SPNs across diverse datasets, connecting it to complementary spatial mapping. Combining RNAscope and multi-omics shows D1/2R SPNs further separate into distinct subtypes according to spatial organization and conserved marker genes. Each SPN cell type contributes uniquely to genetic risk for neuropsychiatric diseases. Our results bridge anatomy and transcriptomics to offer new understandings of striatal neuron heterogeneity.
RESUMEN
Thousands of genomic regions have been associated with heritable human diseases, but attempts to elucidate biological mechanisms are impeded by an inability to discern which genomic positions are functionally important. Evolutionary constraint is a powerful predictor of function, agnostic to cell type or disease mechanism. Single-base phyloP scores from 240 mammals identified 3.3% of the human genome as significantly constrained and likely functional. We compared phyloP scores to genome annotation, association studies, copy-number variation, clinical genetics findings, and cancer data. Constrained positions are enriched for variants that explain common disease heritability more than other functional annotations. Our results improve variant annotation but also highlight that the regulatory landscape of the human genome still needs to be further explored and linked to disease.
Asunto(s)
Enfermedad , Variación Genética , Animales , Humanos , Evolución Biológica , Genoma Humano , Estudio de Asociación del Genoma Completo , Genómica , Anotación de Secuencia Molecular , Polimorfismo de Nucleótido Simple , Enfermedad/genéticaRESUMEN
Protein-coding differences between species often fail to explain phenotypic diversity, suggesting the involvement of genomic elements that regulate gene expression such as enhancers. Identifying associations between enhancers and phenotypes is challenging because enhancer activity can be tissue-dependent and functionally conserved despite low sequence conservation. We developed the Tissue-Aware Conservation Inference Toolkit (TACIT) to associate candidate enhancers with species' phenotypes using predictions from machine learning models trained on specific tissues. Applying TACIT to associate motor cortex and parvalbumin-positive interneuron enhancers with neurological phenotypes revealed dozens of enhancer-phenotype associations, including brain size-associated enhancers that interact with genes implicated in microcephaly or macrocephaly. TACIT provides a foundation for identifying enhancers associated with the evolution of any convergently evolved phenotype in any large group of species with aligned genomes.
Asunto(s)
Elementos de Facilitación Genéticos , Variación Genética , Aprendizaje Automático , Mamíferos , Animales , Mamíferos/genética , FenotipoRESUMEN
Although thousands of genomic regions have been associated with heritable human diseases, attempts to elucidate biological mechanisms are impeded by a general inability to discern which genomic positions are functionally important. Evolutionary constraint is a powerful predictor of function that is agnostic to cell type or disease mechanism. Here, single base phyloP scores from the whole genome alignment of 240 placental mammals identified 3.5% of the human genome as significantly constrained, and likely functional. We compared these scores to large-scale genome annotation, genome-wide association studies (GWAS), copy number variation, clinical genetics findings, and cancer data sets. Evolutionarily constrained positions are enriched for variants explaining common disease heritability (more than any other functional annotation). Our results improve variant annotation but also highlight that the regulatory landscape of the human genome still needs to be further explored and linked to disease.
RESUMEN
DNA double-strand breaks (DSBs) are linked to neurodegeneration and senescence. However, it is not clear how DSB-bearing neurons influence neuroinflammation associated with neurodegeneration. Here, we characterize DSB-bearing neurons from the CK-p25 mouse model of neurodegeneration using single-nucleus, bulk, and spatial transcriptomic techniques. DSB-bearing neurons enter a late-stage DNA damage response marked by nuclear factor κB (NFκB)-activated senescent and antiviral immune pathways. In humans, Alzheimer's disease pathology is closely associated with immune activation in excitatory neurons. Spatial transcriptomics reveal that regions of CK-p25 brain tissue dense with DSB-bearing neurons harbor signatures of inflammatory microglia, which is ameliorated by NFκB knockdown in neurons. Inhibition of NFκB in DSB-bearing neurons also reduces microglia activation in organotypic mouse brain slice culture. In conclusion, DSBs activate immune pathways in neurons, which in turn adopt a senescence-associated secretory phenotype to elicit microglia activation. These findings highlight a previously unidentified role for neurons in the mechanism of disease-associated neuroinflammation.
Asunto(s)
Roturas del ADN de Doble Cadena , Microglía , Animales , Antivirales/metabolismo , ADN/metabolismo , Humanos , Ratones , Microglía/metabolismo , FN-kappa B/metabolismo , Neuronas/metabolismoRESUMEN
Recent discoveries of extreme cellular diversity in the brain warrant rapid development of technologies to access specific cell populations within heterogeneous tissue. Available approaches for engineering-targeted technologies for new neuron subtypes are low yield, involving intensive transgenic strain or virus screening. Here, we present Specific Nuclear-Anchored Independent Labeling (SNAIL), an improved virus-based strategy for cell labeling and nuclear isolation from heterogeneous tissue. SNAIL works by leveraging machine learning and other computational approaches to identify DNA sequence features that confer cell type-specific gene activation and then make a probe that drives an affinity purification-compatible reporter gene. As a proof of concept, we designed and validated two novel SNAIL probes that target parvalbumin-expressing (PV+) neurons. Nuclear isolation using SNAIL in wild-type mice is sufficient to capture characteristic open chromatin features of PV+ neurons in the cortex, striatum, and external globus pallidus. The SNAIL framework also has high utility for multispecies cell probe engineering; expression from a mouse PV+ SNAIL enhancer sequence was enriched in PV+ neurons of the macaque cortex. Expansion of this technology has broad applications in cell type-specific observation, manipulation, and therapeutics across species and disease models.
Asunto(s)
Elementos de Facilitación Genéticos , Aprendizaje Automático , Neuronas , Análisis de Secuencia de ADN , Animales , Corteza Cerebral/metabolismo , Biología Computacional/métodos , Elementos de Facilitación Genéticos/genética , Globo Pálido , Ratones , Neuronas/metabolismo , Parvalbúminas/metabolismo , Análisis de Secuencia de ADN/métodosRESUMEN
BACKGROUND: Evolutionary conservation is an invaluable tool for inferring functional significance in the genome, including regions that are crucial across many species and those that have undergone convergent evolution. Computational methods to test for sequence conservation are dominated by algorithms that examine the ability of one or more nucleotides to align across large evolutionary distances. While these nucleotide alignment-based approaches have proven powerful for protein-coding genes and some non-coding elements, they fail to capture conservation of many enhancers, distal regulatory elements that control spatial and temporal patterns of gene expression. The function of enhancers is governed by a complex, often tissue- and cell type-specific code that links combinations of transcription factor binding sites and other regulation-related sequence patterns to regulatory activity. Thus, function of orthologous enhancer regions can be conserved across large evolutionary distances, even when nucleotide turnover is high. RESULTS: We present a new machine learning-based approach for evaluating enhancer conservation that leverages the combinatorial sequence code of enhancer activity rather than relying on the alignment of individual nucleotides. We first train a convolutional neural network model that can predict tissue-specific open chromatin, a proxy for enhancer activity, across mammals. Next, we apply that model to distinguish instances where the genome sequence would predict conserved function versus a loss of regulatory activity in that tissue. We present criteria for systematically evaluating model performance for this task and use them to demonstrate that our models accurately predict tissue-specific conservation and divergence in open chromatin between primate and rodent species, vastly out-performing leading nucleotide alignment-based approaches. We then apply our models to predict open chromatin at orthologs of brain and liver open chromatin regions across hundreds of mammals and find that brain enhancers associated with neuron activity have a stronger tendency than the general population to have predicted lineage-specific open chromatin. CONCLUSION: The framework presented here provides a mechanism to annotate tissue-specific regulatory function across hundreds of genomes and to study enhancer evolution using predicted regulatory differences rather than nucleotide-level conservation measurements.
Asunto(s)
Cromatina , Elementos de Facilitación Genéticos , Animales , Cromatina/genética , Humanos , Mamíferos/genética , Redes Neurales de la Computación , NucleótidosRESUMEN
Severe and persistent disruptions to sleep and circadian rhythms are common in people with opioid use disorder (OUD). Preclinical evidence suggests altered molecular rhythms in the brain modulate opioid reward and relapse. However, whether molecular rhythms are disrupted in the brains of people with OUD remained an open question, critical to understanding the role of circadian rhythms in opioid addiction. Using subjects' times of death as a marker of time of day, we investigated transcriptional rhythms in the brains of subjects with OUD compared to unaffected comparison subjects. We discovered rhythmic transcripts in both the dorsolateral prefrontal cortex (DLPFC) and nucleus accumbens (NAc), key brain areas involved in OUD, that were largely distinct between OUD and unaffected subjects. Fewer rhythmic transcripts were identified in DLPFC of subjects with OUD compared to unaffected subjects, whereas in the NAc, nearly double the number of rhythmic transcripts was identified in subjects with OUD. In NAc of subjects with OUD, rhythmic transcripts peaked either in the evening or near sunrise, and were associated with an opioid, dopamine, and GABAergic neurotransmission. Associations with altered neurotransmission in NAc were further supported by co-expression network analysis which identified OUD-specific modules enriched for transcripts involved in dopamine, GABA, and glutamatergic synaptic functions. Additionally, rhythmic transcripts in DLPFC and NAc of subjects with OUD were enriched for genomic loci associated with sleep-related GWAS traits, including sleep duration and insomnia. Collectively, our findings connect transcriptional rhythm changes in opioidergic, dopaminergic, GABAergic signaling in the human brain to sleep-related traits in opioid addiction.
Asunto(s)
Núcleo Accumbens , Trastornos Relacionados con Opioides , Analgésicos Opioides , Encéfalo , Humanos , Trastornos Relacionados con Opioides/genética , Corteza PrefrontalRESUMEN
Mammalian nephrons originate from a population of nephron progenitor cells, and changes in these cells' transcriptomes contribute to the cessation of nephrogenesis, an important determinant of nephron number. To characterize microRNA (miRNA) expression and identify putative cis-regulatory regions, we collected nephron progenitor cells from mouse kidneys at embryonic day 14.5 and postnatal day zero and assayed small RNA expression and transposase-accessible chromatin. We detect expression of 1104 miRNA (114 with expression changes), and 46,374 chromatin accessible regions (2103 with changes in accessibility). Genome-wide, our data highlight processes like cellular differentiation, cell migration, extracellular matrix interactions, and developmental signaling pathways. Furthermore, they identify new candidate cis-regulatory elements for Eya1 and Pax8, both genes with a role in nephron progenitor cell differentiation. Finally, we associate expression-changing miRNAs, including let-7-5p, miR-125b-5p, miR-181a-2-3p, and miR-9-3p, with candidate cis-regulatory elements and target genes. These analyses highlight new putative cis-regulatory loci for miRNA in nephron progenitors.
Asunto(s)
Cromatina , MicroARNs , Animales , Diferenciación Celular/genética , Cromatina/genética , Cromatina/metabolismo , Riñón/metabolismo , Mamíferos/genética , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Nefronas/metabolismo , Células MadreRESUMEN
We profile genome-wide histone 3 lysine 27 acetylation (H3K27ac) of 3 major brain cell types from hippocampus and dorsolateral prefrontal cortex (dlPFC) of subjects with and without Alzheimer's Disease (AD). We confirm that single nucleotide polymorphisms (SNPs) associated with late onset AD (LOAD) show a strong tendency to reside in microglia-specific gene regulatory elements. Despite this significant colocalization, we find that microglia harbor more acetylation changes associated with age than with amyloid-ß (Aß) load. In contrast, we detect that an oligodendrocyte-enriched glial (OEG) population contains the majority of differentially acetylated peaks associated with Aß load. These differential peaks reside near both early onset risk genes (APP, PSEN1, PSEN2) and late onset AD risk loci (including BIN1, PICALM, CLU, ADAM10, ADAMTS4, SORL1, FERMT2), Aß processing genes (BACE1), as well as genes involved in myelinating and oligodendrocyte development processes. Interestingly, a number of LOAD risk loci associated with differentially acetylated risk genes contain H3K27ac peaks that are specifically enriched in OEG. These findings implicate oligodendrocyte gene regulation as a potential mechanism by which early onset and late onset risk genes mediate their effects, and highlight the deregulation of myelinating processes in AD. More broadly, our dataset serves as a resource for the study of functional effects of genetic variants and cell type specific gene regulation in AD.
RESUMEN
Medium spiny neurons (MSNs) constitute the vast majority of striatal neurons and the principal interface between dopamine reward signals and functionally diverse cortico-basal ganglia circuits. Information processing in these circuits is dependent on distinct MSN types: cell types that are traditionally defined according to their projection targets or dopamine receptor expression. Single-cell transcriptional studies have revealed greater MSN heterogeneity than predicted by traditional circuit models, but the transcriptional landscape in the primate striatum remains unknown. Here, we set out to establish molecular definitions for MSN subtypes in Rhesus monkeys and to explore the relationships between transcriptionally defined subtypes and anatomical subdivisions of the striatum. Our results suggest at least nine MSN subtypes, including dorsal striatum subtypes associated with striosome and matrix compartments, ventral striatum subtypes associated with the nucleus accumbens shell and olfactory tubercle, and an MSN-like cell type restricted to µ-opioid receptor rich islands in the ventral striatum. Although each subtype was demarcated by discontinuities in gene expression, continuous variation within subtypes defined gradients corresponding to anatomical locations and, potentially, functional specializations. These results lay the foundation for achieving cell-type-specific transgenesis in the primate striatum and provide a blueprint for investigating circuit-specific information processing.
Asunto(s)
Cuerpo Estriado , Neuronas , Animales , Cuerpo Estriado/fisiología , Dopamina/metabolismo , Ratones , Ratones Endogámicos C57BL , Neostriado , Neuronas/fisiología , PrimatesRESUMEN
Background: Adeno-associated virus (AAV)-mediated gene therapies are rapidly advancing to the clinic, and AAV engineering has resulted in vectors with increased ability to deliver therapeutic genes. Although the choice of vector is critical, quantitative comparison of AAVs, especially in large animals, remains challenging. Methods: Here, we developed an efficient single-cell AAV engineering pipeline (scAAVengr) to simultaneously quantify and rank efficiency of competing AAV vectors across all cell types in the same animal. Results: To demonstrate proof-of-concept for the scAAVengr workflow, we quantified - with cell-type resolution - the abilities of naturally occurring and newly engineered AAVs to mediate gene expression in primate retina following intravitreal injection. A top performing variant identified using this pipeline, K912, was used to deliver SaCas9 and edit the rhodopsin gene in macaque retina, resulting in editing efficiency similar to infection rates detected by the scAAVengr workflow. scAAVengr was then used to identify top-performing AAV variants in mouse brain, heart, and liver following systemic injection. Conclusions: These results validate scAAVengr as a powerful method for development of AAV vectors. Funding: This work was supported by funding from the Ford Foundation, NEI/NIH, Research to Prevent Blindness, Foundation Fighting Blindness, UPMC Immune Transplant and Therapy Center, and the Van Sloun fund for canine genetic research.
Gene therapy is an experimental approach to treating disease that involves altering faulty genes or replacing them with new, working copies. Most often, the new genetic material is delivered into cells using a modified virus that no longer causes disease, called a viral vector. Virus-mediated gene therapies are currently being explored for degenerative eye diseases, such as retinitis pigmentosa, and neurological disorders, like Alzheimer's and Parkinson's disease. A number of gene therapies have also been approved for treating some rare cancers, blood disorders and a childhood form of motor neuron disease. Despite the promise of virus-mediated gene therapy, there are significant hurdles to its widespread success. Viral vectors need to deliver enough genetic material to the right cells without triggering an immune response or causing serious side effects. Selecting an optimal vector is key to achieving this. A type of viruses called adeno-associated viruses (AAV) are prime candidates, partly because they can be easily engineered. However, accurately comparing the safety and efficacy of newly engineered AAVs is difficult, due to variation between test subjects and the labor and cost involved in careful testing. Öztürk et al. addressed this issue by developing an experimental pipeline called scAAVengr for comparing gene therapy vectors head-to-head. The process involves tagging potential AAV vectors with unique genetic barcodes, which can then be detected and quantified in individual cells using a technique called single-cell RNA sequencing. This means that when several vectors are used to infect lab-grown cells or a test animal at the same time, they can be tracked. The vectors can then be ranked on their ability to infect specific cell types and deliver useful genetic material. Using scAAVengr, Öztürk et al. compared viral vectors designed to target the light-sensitive cells of the retina, which allow animals to see. First, a set of promising viral vectors were evaluated using the scAAVengr pipeline in the eyes of marmosets and macaques, two small primates. Precise levels and locations of gene delivery were quantified. The top-performing vector was then identified and used to deliver Cas9, a genome editing tool, to primate retinas. Öztürk et al. also used scAAVengr to compare viral vectors in mice, analysing the vectors' ability to deliver their genetic cargo to the brain, heart, and liver. These experiments demonstrated that scAAVengr can be used to evaluate vectors in multiple tissues and in different organisms. In summary, this work outlines a method for identifying and precisely quantifying the performance of top-performing viral vectors for gene therapy. By aiding the selection of optimal viral vectors, the scAAVengr pipeline could help to improve the success of preclinical studies and early clinical trials testing gene therapies.
Asunto(s)
Dependovirus/fisiología , Perfilación de la Expresión Génica/métodos , Macaca fascicularis/fisiología , Retina/fisiología , Transcriptoma , Transducción Genética , Animales , Vectores GenéticosRESUMEN
Symptoms of neurological diseases emerge through the dysfunction of neural circuits whose diffuse and intertwined architectures pose serious challenges for delivering therapies. Deep brain stimulation (DBS) improves Parkinson's disease symptoms acutely but does not differentiate between neuronal circuits, and its effects decay rapidly if stimulation is discontinued. Recent findings suggest that optogenetic manipulation of distinct neuronal subpopulations in the external globus pallidus (GPe) provides long-lasting therapeutic effects in dopamine-depleted (DD) mice. We used synaptic differences to excite parvalbumin-expressing GPe neurons and inhibit lim-homeobox-6expressing GPe neurons simultaneously using brief bursts of electrical stimulation. In DD mice, circuit-inspired DBS provided long-lasting therapeutic benefits that far exceeded those induced by conventional DBS, extending several hours after stimulation. These results establish the feasibility of transforming knowledge of circuit architecture into translatable therapeutic approaches.