Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Insect Physiol ; 127: 104115, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32976817

RESUMEN

Insects, due to their small size, have limited energy storage space, but they also have high metabolic rate, so their hemolymph sugars are incredibly dynamic and play a number of important physiological functional roles in maintaining energetic homeostasis. In contrast to vertebrates, trehalose is generally the primary sugar found in insect hemolymph, which is followed by glucose and fructose. Many analytical chemistry methods exist to measure sugars, yet a direct comparison of methods that can measure all three simultaneously, and trehalose in particular, from low sample volumes, are sparse. Using the honey bee as a model, we directly compare the leading current methods of using High Performance Liquid Chromatography (HPLC) with an evaporative light-scattering detector and Gas Chromatography coupled with Mass Spectrometry (GC-MS) to determine which method would be better for measuring trehalose, glucose, and fructose in terms of reproducibility, accuracy, and sensitivity. Furthermore, we injected the enzyme inhibitors trehalozin (a trehalase inhibitor) and sorbose (a trehalase p-synthase inhibitor) to manipulate the trehalose levels in honey bee foragers as a proof of concept that this sugar can be altered independently of hemolymph glucose and fructose levels. Overall the HPLC method was less reproducible for measuring fructose and glucose, and it also had lower sensitivity for measuring trehalose. Consequently, significant differences in trehalose levels within the forager class were only detected with the GC-MS and not the HPLC method. Lastly, using the GC-MS method in the follow up study we found that trehalozin and sorbose causes a significant increase and decrease of trehalose levels respectively, in forager honey bees, independent of the glucose and fructose levels, ten minutes after injection. Taken together, these methods will provide useful tools for future studies exploring the many different physiological functional roles that trehalose can play in maintaining insect energetic homeostasis.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Disacáridos/administración & dosificación , Cromatografía de Gases y Espectrometría de Masas/métodos , Hemolinfa/química , Sorbosa/metabolismo , Trehalosa/metabolismo , Factores de Edad , Animales , Abejas , Disacáridos/farmacología , Privación de Alimentos/fisiología , Hemolinfa/metabolismo , Sorbosa/administración & dosificación , Azúcares/metabolismo , Trehalosa/administración & dosificación , Trehalosa/antagonistas & inhibidores
2.
Artículo en Inglés | MEDLINE | ID: mdl-31190093

RESUMEN

Insects have rapidly changing energy demands, so they primarily rely on hemolymph and other carbohydrates to carry out life activities. However, how gustatory responsiveness and hemolymph sugar levels coordinate with one another to maintain energetic homeostasis in insects remains largely unknown for the highly social honeybee that goes through large physiological and behavioral changes. The potential role of biogenic amines and neuropeptides in the connection between the regulation of appetite and fluctuating sugar levels in the hemolymph, due to starvation, as the bee ages, was investigated. The largest appetite increase due to the starvation treatment was within the forager age class and this corresponded with an increase in octopamine levels in the brain along with a decline in hemolymph sugar levels. Adipokinetic hormone (AKH) was found in very small quantities in the brain and there were no significant changes in response to starvation treatment. Our findings suggest that the particularly dynamic levels of hemolymph sugar levels may serve as a monitor of the forager honeybee energetic state. Therefore, there may be a pathway in forager bees via octopamine responsible for their precise precipitous regulation of appetite, but to determine cause and effect relationships further investigation is needed.


Asunto(s)
Apetito/fisiología , Abejas/fisiología , Encéfalo/metabolismo , Hemolinfa/metabolismo , Octopamina/metabolismo , Animales , Hemolinfa/química , Azúcares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA