Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Neurophysiol ; 115(2): 843-50, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26655826

RESUMEN

Experimental evidence shows that neurotransmitter release, from presynaptic terminals, can be regulated by altering transmitter load per synaptic vesicle (SV) and/or through change in the probability of vesicle release. The vesicular acetylcholine transporter (VAChT) loads acetylcholine into SVs at cholinergic synapses. We investigated how the VAChT affects SV content and release frequency at central synapses in Drosophila melanogaster by using an insecticidal compound, 5Cl-CASPP, to block VAChT and by transgenic overexpression of VAChT in cholinergic interneurons. Decreasing VAChT activity produces a decrease in spontaneous SV release with no change to quantal size and no decrease in the number of vesicles at the active zone. This suggests that many vesicles are lacking in neurotransmitter. Overexpression of VAChT leads to increased frequency of SV release, but again with no change in quantal size or vesicle number. This indicates that loading of central cholinergic SVs obeys the "set-point" model, rather than the "steady-state" model that better describes loading at the vertebrate neuromuscular junction. However, we show that expression of a VAChT polymorphism lacking one glutamine residue in a COOH-terminal polyQ domain leads to increased spontaneous SV release and increased quantal size. This effect spotlights the poly-glutamine domain as potentially being important for sensing the level of neurotransmitter in cholinergic SVs.


Asunto(s)
Neuronas Colinérgicas/metabolismo , Proteínas de Drosophila/metabolismo , Vesículas Sinápticas/metabolismo , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo , Animales , Neuronas Colinérgicas/fisiología , Proteínas de Drosophila/genética , Drosophila melanogaster , Exocitosis , Interneuronas/metabolismo , Interneuronas/fisiología , Potenciales Postsinápticos Miniatura , Mutación , Sinapsis/metabolismo , Sinapsis/fisiología , Proteínas de Transporte Vesicular de Acetilcolina/genética
2.
J Biomed Opt ; 20(1): 016012, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25588163

RESUMEN

We present a swept source optical coherence tomography (OCT) system at 1060 nm equipped with a wavefront sensor at 830 nm and a deformable mirror in a closed-loop adaptive optics (AO) system. Due to the AO correction, the confocal profile of the interface optics becomes narrower than the OCT axial range, restricting the part of the B-scan (cross section) with good contrast. By actuating on the deformable mirror, the depth of the focus is changed and the system is used to demonstrate Gabor filtering in order to produce B-scan OCT images with enhanced sensitivity throughout the axial range from a Drosophila larvae. The focus adjustment is achieved by manipulating the curvature of the deformable mirror between two user-defined limits. Particularities of controlling the focus for Gabor filtering using the deformable mirror are presented.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/instrumentación , Microscopía Confocal/instrumentación , Tomografía de Coherencia Óptica/instrumentación , Animales , Drosophila/anatomía & histología , Diseño de Equipo , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Larva/anatomía & histología , Microscopía Confocal/métodos , Pulgar/anatomía & histología , Tomografía de Coherencia Óptica/métodos
3.
J Cell Sci ; 126(Pt 17): 3823-34, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23813964

RESUMEN

Innexins are one of two gene families that have evolved to permit neighbouring cells in multicellular systems to communicate directly. Innexins are found in prechordates and persist in small numbers in chordates as divergent sequences termed pannexins. Connexins are functionally analogous proteins exclusive to chordates. Members of these two families of proteins form intercellular channels, assemblies of which constitute gap junctions. Each intercellular channel is a composite of two hemichannels, one from each of two apposed cells. Hemichannels dock in the extracellular space to form a complete channel with a central aqueous pore that regulates the cell-cell exchange of ions and small signalling molecules. Hemichannels can also act independently by releasing paracrine signalling molecules. optic ganglion reduced (ogre) is a member of the Drosophila innexin family, originally identified as a gene essential for postembryonic neurogenesis. Here we demonstrate, by heterologous expression in paired Xenopus oocytes, that Ogre alone does not form homotypic gap-junction channels; however, co-expression of Ogre with Innexin2 (Inx2) induces formation of functional channels with properties distinct from Inx2 homotypic channels. In the Drosophila larval central nervous system, we find that Inx2 partially colocalises with Ogre in proliferative neuroepithelia and in glial cells. Downregulation of either ogre or inx2 selectively in glia, by targeted expression of RNA interference transgenes, leads to a significant reduction in the size of the larval nervous system and behavioural defects in surviving adults. We conclude that these innexins are crucially required in glial cells for normal postembryonic development of the central nervous system.


Asunto(s)
Sistema Nervioso Central/embriología , Conexinas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuroglía/metabolismo , Animales , Secuencia de Bases , Sistema Nervioso Central/metabolismo , Conexinas/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Uniones Comunicantes/metabolismo , Canales Iónicos/genética , Canales Iónicos/metabolismo , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Oocitos/citología , Oocitos/metabolismo , Interferencia de ARN , ARN Interferente Pequeño , Xenopus laevis/embriología
4.
Biophys J ; 101(10): 2408-16, 2011 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-22098739

RESUMEN

The channel proteins of gap junctions are encoded by two distinct gene families, connexins, which are exclusive to chordates, and innexins/pannexins, which are found throughout the animal kingdom. Although the relationship between the primary structure and function of the vertebrate connexins has been relatively well studied, there are, to our knowledge, no structure-function analyses of invertebrate innexins. In the first such study, we have used tryptophan scanning to probe the first transmembrane domain (M1) of the Drosophila innexin Shaking-B(Lethal), which is a component of rectifying electrical synapses in the Giant Fiber escape neural circuit. Tryptophan was substituted sequentially for 16 amino acids within M1 of Shaking-B(Lethal). Tryptophan insertion at every fourth residue (H27, T31, L35, and S39) disrupted gap junction function. The distribution of these sites is consistent with helical secondary structure and identifies the face of M1 involved in helix-helix interactions. Tryptophan substitution at several sites in M1 altered channel properties in a variety of ways. Changes in sensitivity to transjunctional voltage (Vj) were common and one mutation (S39W) induced sensitivity to transmembrane voltage (Vm). In addition, several mutations induced hemichannel activity. These changes are similar to those observed after substitutions within the transmembrane domains of connexins.


Asunto(s)
Membrana Celular/metabolismo , Conexinas/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Mutagénesis/genética , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Triptófano/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos/genética , Animales , Conexinas/química , Conexinas/metabolismo , Proteínas de Drosophila/metabolismo , Electricidad , Femenino , Uniones Comunicantes/metabolismo , Activación del Canal Iónico , Datos de Secuencia Molecular , Mutagénesis Insercional , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Oocitos/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Xenopus
5.
Curr Biol ; 18(24): 1955-60, 2008 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-19084406

RESUMEN

Electrical synapses are neuronal gap junctions that mediate fast transmission in many neural circuits. The structural proteins of gap junctions are the products of two multigene families. Connexins are unique to chordates; innexins/pannexins encode gap-junction proteins in prechordates and chordates. A concentric array of six protein subunits constitutes a hemichannel; electrical synapses result from the docking of hemichannels in pre- and postsynaptic neurons. Some electrical synapses are bidirectional; others are rectifying junctions that preferentially transmit depolarizing current anterogradely. The phenomenon of rectification was first described five decades ago, but the molecular mechanism has not been elucidated. Here, we demonstrate that putative rectifying electrical synapses in the Drosophila Giant Fiber System are assembled from two products of the innexin gene shaking-B. Shaking-B(Neural+16) is required presynaptically in the Giant Fiber to couple this cell to its postsynaptic targets that express Shaking-B(Lethal). When expressed in vitro in neighboring cells, Shaking-B(Neural+16) and Shaking-B(Lethal) form heterotypic channels that are asymmetrically gated by voltage and exhibit classical rectification. These data provide the most definitive evidence to date that rectification is achieved by differential regulation of the pre- and postsynaptic elements of structurally asymmetric junctions.


Asunto(s)
Drosophila/fisiología , Sinapsis Eléctricas/fisiología , Animales , Animales Modificados Genéticamente , Conexinas/genética , Conexinas/fisiología , Drosophila/anatomía & histología , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Fenómenos Electrofisiológicos , Femenino , Marcación de Gen , Genes de Insecto , Activación del Canal Iónico , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Neuronas/fisiología , Oocitos/metabolismo , Fenotipo , Terminales Presinápticos/fisiología , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Xenopus
6.
Semin Cell Dev Biol ; 17(1): 31-41, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16378740

RESUMEN

Flies escape danger by jumping into the air and flying away. The giant fibre system (GFS) is the neural circuit that mediates this simple behavioural response to visual stimuli. The sensory signal is received by the giant fibre and relayed to the leg and wing muscle motorneurons. Many of the neurons in the Drosophila GFS are uniquely identifiable and amenable to cell biological, electrophysiological and genetic studies. Here we review the anatomy and development of this system and highlight its utility for studying many aspects of nervous system biology ranging from neural development and synaptic plasticity to the aetiology of neural disorder.


Asunto(s)
Drosophila melanogaster , Reacción de Fuga/fisiología , Neuronas Motoras , Red Nerviosa , Sinapsis/fisiología , Animales , Modelos Animales de Enfermedad , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/embriología , Epilepsia/fisiopatología , Vuelo Animal , Humanos , Neuronas Motoras/fisiología , Neuronas Motoras/ultraestructura , Sinapsis/ultraestructura
9.
Biochim Biophys Acta ; 1711(2): 225-45, 2005 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-15921654

RESUMEN

Gap junctions are clusters of intercellular channels that provide cells, in all metazoan organisms, with a means of communicating directly with their neighbours. Surprisingly, two gene families have evolved to fulfil this fundamental, and highly conserved, function. In vertebrates, gap junctions are assembled from a large family of connexin proteins. Innexins were originally characterized as the structural components of gap junctions in Drosophila, an arthropod, and the nematode Caenorhabditis elegans. Since then, innexin homologues have been identified in representatives of the other major invertebrate phyla and in insect-associated viruses. Intriguingly, functional innexin homologues have also been found in vertebrate genomes. These studies have informed our understanding of the molecular evolution of gap junctions and have greatly expanded the numbers of model systems available for functional studies. Genetic manipulation of innexin function in relatively simple cellular systems should speed progress not only in defining the importance of gap junctions in a variety of biological processes but also in elucidating the mechanisms by which they act.


Asunto(s)
Conexinas/genética , Uniones Comunicantes/genética , Secuencia de Aminoácidos , Animales , Evolución Biológica , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/genética , Conexinas/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Drosophila melanogaster/crecimiento & desarrollo , Uniones Comunicantes/fisiología , Humanos , Canales Iónicos/fisiología , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Datos de Secuencia Molecular , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Fenotipo , Alineación de Secuencia
10.
Mech Dev ; 113(2): 197-205, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-11960713

RESUMEN

Invertebrate gap junctions are composed of proteins called innexins and eight innexin encoding loci have been identified in the now complete genome sequence of Drosophila melanogaster. The intercellular channels formed by these proteins are multimeric and previous studies have shown that, in a heterologous expression system, homo- and hetero-oligomeric channels can form, each combination possessing different gating characteristics. Here we demonstrate that the innexins exhibit complex overlapping expression patterns during oogenesis, embryogenesis, imaginal wing disc development and central nervous system development and show that only certain combinations of innexin oligomerization are possible in vivo. This work forms an essential basis for future studies of innexin interactions in Drosophila and outlines the potential extent of gap-junction involvement in development.


Asunto(s)
Conexinas/biosíntesis , Proteínas de Drosophila/biosíntesis , Secuencia de Aminoácidos , Animales , Sistema Nervioso Central/embriología , Cromosomas/ultraestructura , ADN Complementario/metabolismo , Drosophila melanogaster , Expresión Génica , Hibridación in Situ , Modelos Genéticos , Datos de Secuencia Molecular , Filogenia , ARN Mensajero/metabolismo , Retina/embriología , Homología de Secuencia de Aminoácido , Alas de Animales/embriología
11.
Eur J Neurosci ; 4(11): 1180-1190, 1992 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12106422

RESUMEN

Synaptophysin, a 38-kD glycoprotein, is one of the most abundant of the integral membrane proteins of small synaptic vesicles. The protein is widely distributed at synapses throughout the nervous system, where it is believed to be involved in the exocytosis of stored neurotransmitter. We show here that synaptophysin is also widely expressed in growing neurites and growth cones both in vitro and in vivo. In dissociated rat cerebral cortical cultures anti-synaptophysin antiserum (G-95) stains growth cones punctately as soon as they emerge from the cell body. In early cultures all neurites are immunoreactive. Later, synaptophysin is redistributed to become concentrated in axonal varicosities. In developing rat embryos, synaptophysin is expressed in the growing axons of, for instance, the spinal commissural interneurons and the parallel fibres of the cerebellar granule cells long before these neurons have established synaptic connections. These observations suggest that synaptic vesicle proteins like synaptophysin are functionally important in neuronal development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA