Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
PLoS Negl Trop Dis ; 16(2): e0010172, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35143500

RESUMEN

Burkholderia pseudomallei is a soil-dwelling bacterium endemic to Southeast Asia and northern Australia that causes the disease, melioidosis. Although the global genomic diversity of clinical B. pseudomallei isolates has been investigated, there is limited understanding of its genomic diversity across small geographic scales, especially in soil. In this study, we obtained 288 B. pseudomallei isolates from a single soil sample (~100g; intensive site 2, INT2) collected at a depth of 30cm from a site in Ubon Ratchathani Province, Thailand. We sequenced the genomes of 169 of these isolates that represent 7 distinct sequence types (STs), including a new ST (ST1820), based on multi-locus sequence typing (MLST) analysis. A core genome SNP phylogeny demonstrated that all identified STs share a recent common ancestor that diverged an estimated 796-1260 years ago. A pan-genomics analysis demonstrated recombination between clades and intra-MLST phylogenetic and gene differences. To identify potential differential virulence between STs, groups of BALB/c mice (5 mice/isolate) were challenged via subcutaneous injection (500 CFUs) with 30 INT2 isolates representing 5 different STs; over the 21-day experiment, eight isolates killed all mice, 2 isolates killed an intermediate number of mice (1-2), and 20 isolates killed no mice. Although the virulence results were largely stratified by ST, one virulent isolate and six attenuated isolates were from the same ST (ST1005), suggesting that variably conserved genomic regions may contribute to virulence. Genomes from the animal-challenged isolates were subjected to a bacterial genome-wide association study to identify genomic regions associated with differential virulence. One associated region is a unique variant of Hcp1, a component of the type VI secretion system, which may result in attenuation. The results of this study have implications for comprehensive sampling strategies, environmental exposure risk assessment, and understanding recombination and differential virulence in B. pseudomallei.


Asunto(s)
Burkholderia pseudomallei/aislamiento & purificación , Burkholderia pseudomallei/patogenicidad , Melioidosis/microbiología , Filogenia , Microbiología del Suelo , Animales , Burkholderia pseudomallei/clasificación , Burkholderia pseudomallei/genética , Femenino , Genoma Bacteriano , Genómica , Humanos , Ratones Endogámicos BALB C , Tipificación de Secuencias Multilocus , Tailandia , Virulencia
2.
Front Public Health ; 8: 451, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33014966

RESUMEN

Antimicrobial resistance (AMR) in the nosocomial pathogen, Acinetobacter baumannii, is becoming a serious public health threat. While some mechanisms of AMR have been reported, understanding novel mechanisms of resistance is critical for identifying emerging resistance. One of the first steps in identifying novel AMR mechanisms is performing genotype/phenotype association studies; however, performing these studies is complicated by the plastic nature of the A. baumannii pan-genome. In this study, we compared the antibiograms of 12 antimicrobials associated with multiple drug families for 84 A. baumannii isolates, many isolated in Arizona, USA. in silico screening of these genomes for known AMR mechanisms failed to identify clear correlations for most drugs. We then performed a bacterial genome wide association study (bGWAS) looking for associations between all possible 21-mers; this approach generally failed to identify mechanisms that explained the resistance phenotype. In order to decrease the genomic noise associated with population stratification, we compared four phylogenetically-related pairs of isolates with differing susceptibility profiles. RNA-Sequencing (RNA-Seq) was performed on paired isolates and differentially-expressed genes were identified. In these isolate pairs, five different potential mechanisms were identified, highlighting the difficulty of broad AMR surveillance in this species. To verify and validate differential expression, amplicon sequencing was performed. These results suggest that a diagnostic platform based on gene expression rather than genomics alone may be beneficial in certain surveillance efforts. The implementation of such advanced diagnostics coupled with increased AMR surveillance will potentially improve A. baumannii infection treatment and patient outcomes.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Infecciones por Acinetobacter/tratamiento farmacológico , Acinetobacter baumannii/genética , Antibacterianos/farmacología , Arizona , Farmacorresistencia Bacteriana/genética , Estudio de Asociación del Genoma Completo , Humanos , Transcriptoma
3.
PLoS One ; 14(9): e0222211, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31527873

RESUMEN

Choline geranate (also described as Choline And GEranic acid, or CAGE) has been developed as a novel biocompatible antiseptic material capable of penetrating skin and aiding the transdermal delivery of co-administered antibiotics. The antibacterial properties of CAGE were analyzed against 24 and 72 hour old biofilms of 11 clinically isolated ESKAPE pathogens (defined as Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Enterobacter sp, respectively), including multidrug resistant (MDR) isolates. CAGE was observed to eradicate in vitro biofilms at concentrations as low as 3.56 mM (0.156% v:v) in as little as 2 hours, which represents both an improved potency and rate of biofilm eradication relative to that reported for most common standard-of-care topical antiseptics in current use. In vitro time-kill studies on 24 hour old Staphylococcus aureus biofilms indicate that CAGE exerts its antibacterial effect upon contact and a 0.1% v:v solution reduced biofilm viability by over three orders of magnitude (a 3log10 reduction) in 15 minutes. Furthermore, disruption of the protective layer of exopolymeric substances in mature biofilms of Staphylococcus aureus by CAGE (0.1% v:v) was observed in 120 minutes. Insight into the mechanism of action of CAGE was provided with molecular modeling studies alongside in vitro antibiofilm assays. The geranate ion and geranic acid components of CAGE are predicted to act in concert to integrate into bacterial membranes, affect membrane thinning and perturb membrane homeostasis. Taken together, our results show that CAGE demonstrates all properties required of an effective topical antiseptic and the data also provides insight into how its observed antibiofilm properties may manifest.


Asunto(s)
Antiinfecciosos Locales/farmacología , Colina/farmacología , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Biopelículas/efectos de los fármacos , Pruebas de Sensibilidad Microbiana/métodos
4.
Toxins (Basel) ; 11(2)2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30781866

RESUMEN

Nicotinic acetylcholine receptors (nAChRs) are found throughout the mammalian body and have been studied extensively because of their implication in a myriad of diseases. α-Conotoxins (α-CTxs) are peptide neurotoxins found in the venom of marine snails of genus Conus. α-CTxs are potent and selective antagonists for a variety of nAChR isoforms. Over the past 40 years, α-CTxs have proven to be valuable molecular probes capable of differentiating between closely related nAChR subtypes and have contributed greatly to understanding the physiological role of nAChRs in the mammalian nervous system. Here, we review the amino acid composition and structure of several α-CTxs that selectively target nAChR isoforms and explore strategies and outcomes for introducing mutations in native α-CTxs to direct selectivity and enhance binding affinity for specific nAChRs. This review will focus on structure-activity relationship studies involving native α-CTxs that have been rationally mutated and molecular interactions that underlie binding between ligand and nAChR isoform.


Asunto(s)
Conotoxinas/genética , Conotoxinas/metabolismo , Receptores Nicotínicos/química , Receptores Nicotínicos/metabolismo , Animales , Humanos , Mutagénesis , Mutación , Conformación Proteica , Relación Estructura-Actividad
5.
ACS Infect Dis ; 5(3): 406-417, 2019 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-30614674

RESUMEN

To fight the growing threat of antibiotic resistance, new antibiotics are required that target essential bacterial processes other than protein, DNA/RNA, and cell wall synthesis, which constitute the majority of currently used antibiotics. 1-Deoxy-d-xylulose-5-phosphate (DXP) synthase is a vital enzyme in bacterial central metabolism, feeding into the de novo synthesis of thiamine diphosphate, pyridoxal phosphate, and essential isoprenoid precursors isopentenyl diphosphate and dimethylallyl diphosphate. While potent and selective inhibitors of DXP synthase in vitro activity have been discovered, their antibacterial activity is modest. To improve the antibacterial activity of selective alkyl acetylphosphonate (alkylAP) inhibitors of DXP synthase, we synthesized peptidic enamide prodrugs of alkylAPs inspired by the natural product dehydrophos, a prodrug of methyl acetylphosphonate. This prodrug strategy achieves dramatic increases in activity against Gram-negative pathogens for two alkylAPs, butyl acetylphosphonate and homopropargyl acetylphosphonate, decreasing minimum inhibitory concentrations against Escherichia coli by 33- and nearly 2000-fold, respectively. Antimicrobial studies and LC-MS/MS analysis of alkylAP-treated E. coli establish that the increased potency of prodrugs is due to increased accumulation of alkylAP inhibitors of DXP synthase via transport of the prodrug through the OppA peptide permease and subsequent amide hydrolysis. This work demonstrates the promise of targeting DXP synthase for the development of novel antibacterial agents.


Asunto(s)
Antibacterianos/química , Inhibidores Enzimáticos/química , Proteínas de Escherichia coli/antagonistas & inhibidores , Escherichia coli/efectos de los fármacos , Profármacos/química , Transferasas/antagonistas & inhibidores , Antibacterianos/farmacología , Inhibidores Enzimáticos/farmacología , Escherichia coli/enzimología , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Pruebas de Sensibilidad Microbiana , Pentosafosfatos/metabolismo , Profármacos/farmacología , Transferasas/química , Transferasas/metabolismo
6.
PLoS One ; 13(5): e0197638, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29771999

RESUMEN

The in vivo microenvironment of bacterial pathogens is often characterized by nutrient limitation. Consequently, conventional rich in vitro culture conditions used widely to evaluate antibacterial agents are often poorly predictive of in vivo activity, especially for agents targeting metabolic pathways. In one such pathway, the methylerythritol phosphate (MEP) pathway, which is essential for production of isoprenoids in bacterial pathogens, relatively little is known about the influence of growth environment on antibacterial properties of inhibitors targeting enzymes in this pathway. The early steps of the MEP pathway are catalyzed by 1-deoxy-d-xylulose 5-phosphate (DXP) synthase and reductoisomerase (IspC). The in vitro antibacterial efficacy of the DXP synthase inhibitor butylacetylphosphonate (BAP) was recently reported to be strongly dependent upon growth medium, with high potency observed under nutrient limitation and exceedingly weak activity in nutrient-rich conditions. In contrast, the well-known IspC inhibitor fosmidomycin has potent antibacterial activity in nutrient-rich conditions, but to date, its efficacy had not been explored under more relevant nutrient-limited conditions. The goal of this work was to thoroughly characterize the effects of BAP and fosmidomycin on bacterial cells under varied growth conditions. In this work, we show that activities of both inhibitors, alone and in combination, are strongly dependent upon growth medium, with differences in cellular uptake contributing to variance in potency of both agents. Fosmidomycin is dissimilar to BAP in that it displays relatively weaker activity in nutrient-limited compared to nutrient-rich conditions. Interestingly, while it has been generally accepted that fosmidomycin activity depends upon expression of the GlpT transporter, our results indicate for the first time that fosmidomycin can enter cells by an alternative mechanism under nutrient limitation. Finally, we show that the potency and relationship of the BAP-fosmidomycin combination also depends upon the growth medium, revealing a striking loss of BAP-fosmidomycin synergy under nutrient limitation. This change in BAP-fosmidomycin relationship suggests a shift in the metabolic and/or regulatory networks surrounding DXP accompanying the change in growth medium, the understanding of which could significantly impact targeting strategies against this pathway. More generally, our findings emphasize the importance of considering physiologically relevant growth conditions for predicting the antibacterial potential MEP pathway inhibitors and for studies of their intracellular targets.


Asunto(s)
Isomerasas Aldosa-Cetosa/antagonistas & inhibidores , Antibacterianos/farmacología , Medios de Cultivo/farmacología , Enterobacteriaceae/efectos de los fármacos , Eritritol/análogos & derivados , Eritritol/metabolismo , Proteínas de Escherichia coli/antagonistas & inhibidores , Fosfomicina/análogos & derivados , Nutrientes/farmacología , Organofosfonatos/farmacología , Transferasas/antagonistas & inhibidores , Bacillus thuringiensis/efectos de los fármacos , Bacillus thuringiensis/enzimología , Bacillus thuringiensis/crecimiento & desarrollo , Interacciones Farmacológicas , Enterobacteriaceae/enzimología , Enterobacteriaceae/crecimiento & desarrollo , Fosfomicina/farmacología , Redes y Vías Metabólicas , Pruebas de Sensibilidad Microbiana , Complejos Multienzimáticos/metabolismo , Terpenos/metabolismo
7.
PLoS One ; 9(4): e95271, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24751777

RESUMEN

Fosmidomycin is a time-dependent nanomolar inhibitor of methylerythritol phosphate (MEP) synthase, which is the enzyme that catalyzes the first committed step in the MEP pathway to isoprenoids. Importantly, fosmidomycin is one of only a few MEP pathway-specific inhibitors that exhibits antimicrobial activity. Most inhibitors identified to date only exhibit activity against isolated pathway enzymes. The MEP pathway is the sole route to isoprenoids in many bacteria, yet has no human homologs. The development of inhibitors of this pathway holds promise as novel antimicrobial agents. Similarly, analyses of the bacterial response toward MEP pathway inhibitors provides valuable information toward the understanding of how emergent resistance may ultimately develop to this class of antibiotics. We have examined the transcriptional response of Salmonella enterica serovar typhimurium LT2 to sub-inhibitory concentrations of fosmidomycin via cDNA microarray and RT-PCR. Within the regulated genes identified by microarray were a number of genes encoding enzymes associated with the mediation of reactive oxygen species (ROS). Regulation of a panel of genes implicated in the response of cells to oxidative stress (including genes for catalases, superoxide dismutases, and alkylhydrogen peroxide reductases) was investigated and mild upregulation in some members was observed as a function of fosmidomycin exposure over time. The extent of regulation of these genes was similar to that observed for comparable exposures to kanamycin, but differed significantly from tetracycline. Furthermore, S. typhimurium exposed to sub-inhibitory concentrations of fosmidomycin displayed an increased sensitivity to exogenous H2O2 relative to either untreated controls or kanamycin-treated cells. Our results suggest that endogenous oxidative stress is one consequence of exposures to fosmidomycin, likely through the temporal depletion of intracellular isoprenoids themselves, rather than other mechanisms that have been proposed to facilitate ROS accumulation in bacteria (e.g. cell death processes or the ability of the antibiotic to redox cycle).


Asunto(s)
Fosfomicina/análogos & derivados , Estrés Oxidativo/efectos de los fármacos , Salmonella typhimurium/efectos de los fármacos , Antibacterianos/farmacología , Vías Biosintéticas/efectos de los fármacos , Fosfomicina/farmacología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Hemiterpenos/biosíntesis , Hemiterpenos/química , Humanos , Peróxido de Hidrógeno/farmacología , Kanamicina/farmacología , Pruebas de Sensibilidad Microbiana , Análisis de Secuencia por Matrices de Oligonucleótidos , Compuestos Organofosforados/química , Salmonella typhimurium/crecimiento & desarrollo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA