Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Gels ; 10(4)2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38667701

RESUMEN

Gelatin is commonly used as a gelling agent in gummy candy. Honey and bee products are valuable and rich sources of biologically active substances. In this study, the influence of gelatin and propolis extract on honey gummy jelly (HGJ) properties was investigated. Honey (28-32%), xylitol (13-17%), and gelatin (6-10%) were utilized to develop HGJ products by mixture design methodology. Subsequently, the optimized formulation of HGJ was fortified with 1% and 2% propolis extract to enhance its phytochemicals and antimicrobial activities. The variation in the ingredients significantly affected the physicochemical, textural, and sensory properties of the HGJ. The optimized HGJ formulation consisted of honey (32%), xylitol (14%), and gelatin (7%) and exhibited 13.35 × 103 g.force of hardness, -0.56 × 103 g.sec of adhesiveness, 11.96 × 103 N.mm of gumminess, 0.58 of resilience, and a moderate acceptance score (6.7-7.5). The fortification of HGJ with propolis extract significantly increased its phytochemical properties. Furthermore, the incorporation of propolis extract (2%) into the HGJ was able to significantly inhibit the growth of Gram-positive (Streptococcus mutans and Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. The mixture of gelatin, xylitol, honey, and propolis extract can be utilized to develop a healthy gummy product with acceptable physicochemical, textural, and sensory qualities.

2.
Front Cell Infect Microbiol ; 14: 1367010, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38469352

RESUMEN

Stingless bees, a social corbiculate bee member, play a crucial role in providing pollination services. Despite their importance, the structure of their microbiome, particularly the fungal communities, remains poorly understood. This study presents an initial characterization of the fungal community associated with two Thai commercial stingless bee species, Lepidotrigona terminata (Smith) and Tetragonula pagdeni (Schwarz) from Chiang Mai, Thailand. Utilizing ITS amplicon sequencing, we identified distinct fungal microbiomes in these two species. Notably, fungi from the phyla Ascomycota, Basidiomycota, Mucoromycota, Mortierellomycota, and Rozellomycota were present. The most dominant genera, which varied significantly between species, included Candida and Starmerella. Additionally, several key enzymes associated with energy metabolism, structural strength, and host defense reactions, such as adenosine triphosphatase, alcohol dehydrogenase, ß-glucosidase, chitinase, and peptidylprolyl isomerase, were predicted. Our findings not only augment the limited knowledge of the fungal microbiome in Thai commercial stingless bees but also provide insights for their sustainable management through understanding their microbiome.


Asunto(s)
Microbiota , Micobioma , Abejas , Animales , Tailandia
3.
Gels ; 9(10)2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37888389

RESUMEN

This study aimed to develop a film-forming gel containing honey aromatic water (HW) and royal jelly (RJ) for cosmetic applications as a facial peel-off mask. HW, which is industrial waste from the water-reduction process of honey, was sterilized by autoclaving and filtration through a 0.22 µm membrane. The film-forming gels were developed using various types of film-forming polymers, including polyvinyl alcohol (PVA 117), carboxymethyl cellulose (CMC), and hydroxyethyl cellulose (HEC). The gel formulations were characterized in terms of their external appearance, viscosity, pH, and drying time, whereas the films generated were characterized by a texture analyzer, microscopic investigation, Fourier transform infrared, and an X-ray diffractometer. The findings highlighted that HW has short storage shelf life due to microbial contamination. Sterilizations were required before further product development. The film-forming gel was created by using the combination of PVA 117, CMC, and HEC. HW and RJ were successfully incorporated into the film-forming gel. However, HW resulted in a decrease in the gel viscosity and mechanical properties of its film. Interestingly, the drying time was dramatically decreased, which would be more desirable for its use as a peel-off mask. Furthermore, incorporation of royal jelly enhanced the viscosity of the gels as well as improved the mechanical properties of the film. No effect on the chemical and crystal structure of the films was detected after the incorporation. Therefore, the film-forming gels containing HW and RJ, possessing aesthetic attributes that extended to both the gels themselves and the resultant films, were suitable for use as a peel-off mask.

4.
Foods ; 12(11)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37297407

RESUMEN

Edible insects have become increasingly popular in Thailand as a nutritious and appealing alternative food source. As the edible insect industry in the country expands rapidly, efforts are being made to transform it into an economically viable sector with substantial commercial potential. Some of the most consumed and sold edible insects in Thailand include locusts, palm weevils, silkworm pupae, bamboo caterpillars, crickets, red ants, and giant water bugs. With its strong growth, Thailand has the potential to emerge as a global leader in the production and promotion of edible insect products. Edible insects are an excellent source of protein, fat, vitamins, and minerals. In particular, crickets and grasshoppers are protein-rich, with the average protein content of edible insects ranging from 35 to 60 g/100 g of dry weight or 10 to 25 g/100 g of fresh weight. This surpasses the protein content of many plant-based sources. However, the hard exoskeleton of insects, which is high in chitin, can make them difficult to digest. In addition to their nutritional value, edible insects contain biologically active compounds that offer various health benefits. These include antibacterial, anti-inflammatory, anti-collagenase, elastase-inhibitory, α-glucosidase-inhibitory, pancreatic lipase-inhibitory, antidiabetic/insulin-like/insulin-like peptide (ApILP), antidiabetic, anti-aging, and immune-enhancing properties. The Thai food industry can process and utilize edible insects in diverse ways, such as low-temperature processing, including refrigeration and freezing, traditional processing techniques, and incorporating insects into products, such as flour, protein, oil, and canned food. This review offers a comprehensive overview of the status, functional properties, processing, and utilization of edible insects in Thailand, and it serves as a valuable resource for those interested in edible insects and provides guidance for their application in various fields.

5.
J Invertebr Pathol ; 200: 107957, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37364674

RESUMEN

Widespread native honey bee species in South and East Asia (Apis cerana, Apis dorsata and Apis florea) and the imported western honey bee (Apis mellifera) share habitats and potentially also share pathogens. Chief among the threats facing A. mellifera in Europe and North America is deformed wing virus (DWV), including its two principal genotypes: A and B (DWV-A and DWV-B respectively). Though DWV-A has been recorded in Asia's native Apis species, it is not known if DWV-B, or both DWV-A and DWV-B, are currently widespread in Asia and, if so, whether viral transmission is primarily intraspecific or interspecific. This study aims to fill these knowledge gaps by (i) determining the DWV genotype in four co-occurring Apis host species using qPCR and (ii) inferring viral transmission between them using nucleotide sequences of DWV from Apis host species collected at three independent localities in Northern Thailand. We found DWV-A and -B in all four Apis species, the exotic A. mellifera and the native A. cerana, A. dorsata and A. florea. That DWV-A sequences were identical across Apis species at the same locality, with a similar pattern for DWV-B sequences, suggests that DWV's epidemiology is largely driven by ongoing interspecific transmission (spillover) of DWV across co-occurring native and exotic Apis species. Both genotypes of DWV represent a serious threat to Asia's exotic and native honey bee species.


Asunto(s)
Virus ARN , Animales , Abejas , Tailandia , Virus ARN/genética , Europa (Continente) , Genotipo
6.
Animals (Basel) ; 13(8)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37106881

RESUMEN

Tropilaelaps mercedesae, one of the most devastating parasitic mites of honey bee Apis mellifera hosts, is a major threat to honey products by causing severe damage to honey bee colonies. Here, we recorded injury numbers caused by T. mercedesae to different body parts of the larval, pupal, and crippled adult stages of honey bee A. mellifera. We evaluated the relationship between infestation rate and injury numbers per bee for both larvae and pupae. We also noted the total bee numbers per beehive and examined the relationship between the infestation rate and population size. T. mercedesae infested all developmental stages of honey bees, with the highest injury numbers in the abdomens of bee pupae and the antennas of crippled adult bees. Although larvae received more injury numbers than pupae, both infestation rate and injury numbers decreased as the larval stage progressed to the pupal stage. The infestation rate increased as the population size per beehive decreased. This study provided new perspectives to the understanding of changes in the effects of T. mercedesae infestations on different developmental stages of honey bees. It also showed useful baseline information for screening honey bee stock that might have high defensive behaviors against mite infestation.

7.
PLoS One ; 18(3): e0280075, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36857385

RESUMEN

Stingless bees play a crucial role in the environment and agriculture as they are effective pollinators. Furthermore, they can produce various products that can be exploited economically, such as propolis and honey. Despite their economic value, the knowledge of microbial community of stingless bees, and their roles on the bees' health, especially in Thailand, are in its infancy. This study aimed to investigate the composition and the functions of bacterial community associated with Tetragonula pagdeni stingless bees using culture-independent and culture-dependent approaches with emphasis on lactic acid bacteria. The culture-independent results showed that the dominant bacterial phyla were Firmicutes, Proteobacteria and Actinobacteria. The most abundant families were Lactobacillaceae and Halomonadaceae. Functional prediction indicated that the prevalent functions of bacterial communities were chemoheterotrophy and fermentation. In addition, the bacterial community might be able to biosynthesize amino acid and antimicrobial compounds. Further isolation and characterization resulted in isolates that belonged to the dominant taxa of the community and possessed potentially beneficial metabolic activity. This suggested that they are parts of the nutrient acquisition and host defense bacterial functional groups in Thai commercial stingless bees.


Asunto(s)
Abejas , Lactobacillales , Microbiota , Animales , Bacterias , Abejas/microbiología , Tailandia
8.
Life (Basel) ; 13(2)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36836795

RESUMEN

Widespread parasites, along with emerging threats, globalization, and climate change, have greatly affected honey bees' health, leading to colony losses worldwide. In this study, we investigated the detection of biotic stressors (i.e., viruses, microsporidian, bacteria, and fungi) in Apis cerana by surveying the colonies across different regions of Thailand (Chiang Mai in the north, Nong Khai and Khon Kaen in the northeast, and Chumphon and Surat Thani in the south, in addition to the Samui and Pha-ngan islands). In this study, we detected ABPV, BQCV, LSV, and Nosema ceranae in A. cerana samples through RT-PCR. ABPV was only detected from the samples of Chiang Mai, whereas we found BQCV only in those from Chumphon. LSV was detected only in the samples from the Samui and Pha-ngan islands, where historically no managed bees are known. Nosema ceranae was found in all of the regions except for Nong Khai and Khon Kaen in northeastern Thailand. Paenibacillus larvae and Ascosphaera apis were not detected in any of the A. cerana samples in this survey. The phylogenetic tree analysis of the pathogens provided insights into the pathogens' movements and their distribution ranges across different landscapes, indicating the flow of pathogens among the honey bees. Here, we describe the presence of emerging pathogens in the Asian honey bee as a valuable step in our understanding of these pathogens in terms of the decline in eastern honey bee populations.

9.
Plants (Basel) ; 11(18)2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36145824

RESUMEN

Evaluation of multiple barriers contributing to reproductive isolation between sympatric plant species is key to understanding the mechanism of their coexistence; however, such investigations in biodiversity hotspots are still rare. In this study, we investigated and compared geography, microhabitat, phenology, flora, and pollinators, in addition to pollen-pistil interactions, seed production, and seed germination of the closely related sympatric Salvia digitaloides and S. flava on Yulong Snow Mountain, Southwestern Yunnan, China. The geographic distribution of these species overlapped, but their adaptation to physical and chemical properties of soil microhabitats differed. They shared the same flowering time but differed in flower size, style length, nectar volume, sugar concentration, and flower longevity. Both species shared bumblebees as effective pollinators, but flower constancy for the two species was relatively strong. Pollen tube growth, seed production, and seed germination were lower in interspecific than in intraspecific crosses. Our study suggested that microhabitat and pollinator isolation acted as the most important isolating barriers in maintaining the coexistence of the two Salvia species. Our study also highlighted that post-pollination barriers play an important role in preventing the gene flow between these two Salvia species.

10.
Insects ; 13(6)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35735851

RESUMEN

Honey bees are economically important insects for crop pollination. They play a significant role as pollinators of wild plants and agricultural crops and produce economical products, such as honey, royal jelly, wax, pollen, propolis, and venom. Despite their ecological and economical importance, the global honey bee population is in decline due to factors including pathogens, parasites, intensive agriculture, and pesticides. Moreover, these factors may be interlinked and exacerbate the loss of honey bees. This study aimed to investigate the interaction between a pesticide, thiamethoxam, and deformed wing virus type A (DWV-A) to honey bees and the effects on survival rate, wing characteristics, and expression of immune and apoptosis genes in Apis mellifera. We described the potential interaction between thiamethoxam and DWV-A on honey bee wing characteristics, DWV-A loads, and the expressions of immune (defensin, abaecin, and hymenoptaecin) and apoptosis genes (buffy, apaf1, caspase3-like, caspase8-like, and caspase9-like). Honey bee larvae were fed with three different thiamethoxam doses (0.001, 1.4, and 14.3 ng/µL of the diet). Then, thiamethoxam-treated white-eyed pupae were injected with 107 copy numbers/honey bee of the DWV-A genome. The interaction between thiamethoxam and DWV-A caused a high mortality rate, crippled wings in newly emerged adult honey bees (100%), and resulted in induced expression of hymenoptaecin gene compared to the control group, while downregulation of caspase8-like, caspase9-like genes compared to the DWV injection group. Therefore, the potential interaction between thiamethoxam and DWV-A might have a deleterious effect on honey bee lifespan. The results from this study could be used as a tool to combat DWV-A infection and mitigate pesticide usage to alleviate the decrease in the honey bee population.

11.
Front Vet Sci ; 8: 608700, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33842568

RESUMEN

Honeybee drones are male bees that mate with virgin queens during the mating flight, consequently transferring their genes to offspring. Therefore, the health of drones affects the overall fitness of the offspring and ultimately the survivability of the colony. Honeybee viruses are considered to be a major threat to the health of honeybees. In the present study, we demonstrated the pattern of common honeybee viruses in various tissues of drones in the western honeybee, Apis mellifera, and the eastern honeybee, Apis cerana. Drones were collected during the mating flight and analyzed using quantitative real-time (qRT-PCR) to detect the presence of seven honeybee viruses. The qRT-PCR result revealed that three honeybee viruses, namely Black Queen Cell Virus (BQCV), Deformed Wing Virus (DWV), and Chinese Sacbrood Virus (CSBV), were detected in the reproductive tissues of A. mellifera and A. cerana drones. The results from qRT-PCR showed that the Israeli Acute Paralysis Virus (IAPV) was only detected in A. mellifera drone body tissues. Moreover, the prevalence of DWV and BQCV in the drones collected from A. mellifera colonies was significantly higher than that of A. cerana. In addition, virus multiple infections were higher in A. mellifera drones compared to those in A. cerana. CSBV was found predominantly in the reproductive tissues of A. cerana drones. This study is the first report describing the presence of the CSBV in reproductive tissues of A. mellifera drones. Our results may reflect the preference of honeybee viruses in honeybee species and may provide a piece of interesting evidence for understanding the virus transmission in A. cerana.

12.
BMC Complement Med Ther ; 20(1): 267, 2020 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-32867756

RESUMEN

BACKGROUND: Mutations in the human Ubiquilin 2 gene are associated with neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) with or without frontotemporal dementia (FTD), the fatal neurodegenerative disease that progressively affected neuronal cells in both brain and spinal cord. There is currently no effective therapy for these diseases. Over the last decade, researchers have focused on the potential use of natural products especially in neurodegenerative studies. Insect products have been used as traditional medicines, however, scientific information is still lacking. Fruit fly is recently used as a model organism to investigate degenerative diseases related to the nervous system because it has a short life span and produces a large number of offspring. METHODS: The present study investigated the effects of honeybee products and edible insect powders on the locomotive and learning abilities, neuromuscular junctions (NMJs) structure, and reactive oxygen species (ROS) in larval brains of Ubiquilin- knockdown Drosophila. RESULTS: dUbqn knockdown flies showed defects in locomotive and learning abilities accompanied with structural defects in NMJs. The results obtained revealed that the recovery of locomotive defects was significantly greater in dUbqn knockdown flies fed with coffee honey from Apis cerana (1% v/v) or Apis dorsata melittin (0.5 µg/ml) or wasp powder (2 mg/ml) than that of in untreated dUbqn knockdown flies. Furthermore, dUbqn knockdown flies fed with coffee honey showed the partial rescue of structural defects in NMJs, improved learning ability, and reduced the accumulation of ROS caused by dUbqn depletion in the brain over the untreated group. CONCLUSION: These results suggest that coffee honey from Apis cerana contains a neuroprotective agent that will contribute to the development of a novel treatment for ALS/FTD.


Asunto(s)
Apiterapia/métodos , Insectos Comestibles , Locomoción/efectos de los fármacos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Animales , Abejas , Drosophila , Femenino , Polvos , Tailandia
13.
Genome Biol Evol ; 12(1): 3677-3683, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31860080

RESUMEN

The Asian honey bee (Apis dorsata) is distinct from its more widely distributed cousin Apis mellifera by a few key characteristics. Most prominently, A. dorsata, nest in the open by forming a colony clustered around the honeycomb, whereas A. mellifera nest in concealed cavities. Additionally, the worker and reproductive castes are all of the same size in A. dorsata. In order to investigate these differences, we performed whole genome sequencing of A. dorsata using a hybrid Oxford Nanopore and Illumina approach. The 223 Mb genome has an N50 of 35 kb with the largest scaffold of 302 kb. We have found that there are many genes in the dorsata genome that are distinct from other hymenoptera and also large amounts of transposable elements, and we suggest some candidate genes for A. dorsata's exceptional level of defensive aggression.


Asunto(s)
Abejas/genética , Genoma de los Insectos , Animales , Genes de Insecto , Receptor de Serotonina 5-HT2A/genética , Especificidad de la Especie , Secuenciación Completa del Genoma
14.
Sci Rep ; 9(1): 13044, 2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31506594

RESUMEN

Tropilaelaps mercedesae parasitism can cause Apis mellifera colony mortality in Asia. Here, we report for the first time that tropilaelaps mites feed on both pre- and post-capped stages of honey bees. Feeding on pre-capped brood may extend their survival outside capped brood cells, especially in areas where brood production is year-round. In this study, we examined the types of injury inflicted by tropilaelaps mites on different stages of honey bees, the survival of adult honey bees, and level of honey bee viruses in 4th instar larvae and prepupae. The injuries inflicted on different developing honey bee stages were visualised by staining with trypan blue. Among pre-capped stages, 4th instar larvae sustained the highest number of wounds (4.6 ± 0.5/larva) while 2nd-3rd larval instars had at least two wounds. Consequently, wounds were evident on uninfested capped brood (5th-6th instar larvae = 3.91 ± 0.64 wounds; prepupae = 5.25 ± 0.73 wounds). Tropilaelaps mite infestations resulted in 3.4- and 6-fold increases in the number of wounds in 5th-6th instar larvae and prepupae as compared to uninfested capped brood, respectively. When wound-inflicted prepupae metamorphosed to white-eyed pupae, all wound scars disappeared with the exuviae. This healing of wounds contributed to the reduction of the number of wounds (≤10) observed on the different pupal stages. Transmission of mite-borne virus such as Deformed Wing Virus (DWV) was also enhanced by mites feeding on early larval stages. DWV and Black Queen Cell Virus (BQCV) were detected in all 4th instar larvae and prepupae analysed. However, viral levels were more pronounced in scarred 4th instar larvae and infested prepupae. The remarkably high numbers of wounds and viral load on scarred or infested developing honey bees may have caused significant weight loss and extensive injuries observed on the abdomen, wings, legs, proboscis and antennae of adult honey bees. Together, the survival of infested honey bees was significantly compromised. This study demonstrates the ability of tropilaelaps mites to inflict profound damage on A. mellifera hosts. Effective management approaches need to be developed to mitigate tropilaelaps mite problems.


Asunto(s)
Abejas/parasitología , Conducta Alimentaria , Infestaciones por Ácaros , Ácaros , Animales , Conducta Animal , Larva , Ácaros/anatomía & histología , Ácaros/ultraestructura , Pupa
15.
Curr Opin Insect Sci ; 26: 69-75, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29764663

RESUMEN

The risk of transmission of honey bee parasites has increased substantially as a result of trade globalization and technical developments in transportation efficacy. Great concern over honey bee decline has accelerated research on newly emerging bee pests and parasites. These organisms are likely to emerge from Asia as it is the only region where all 10 honey bee species co-occur. Varroa destructor, an ectoparasitic mite, is a classic example of a pest that has shifted from A. cerana, a cavity nesting Asian honey bee to A. mellifera, the European honey bee. In this review, we will describe the potential risks to global apiculture of the global expansion of Tropilaelaps mercedesae, originally a parasite of the open-air nesting Asian giant honey bee, compared to the impact of V. destructor.


Asunto(s)
Abejas/parasitología , Ácaros , Animales , Apicultura , Abejas/crecimiento & desarrollo , Especies Introducidas , Larva/parasitología , Varroidae
16.
J Invertebr Pathol ; 153: 35-37, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29452084

RESUMEN

Successful reproduction by unmated Tropilaelaps mercedesae is reported here for the first time. Of the eight mature daughters that did not have male mates within their natal cells, four produced both mature sons and daughters, and four produced mature daughters only. Overall, 78% of the new daughters that had no egg-laying experience, and 84% of the foundresses that had or had not laid previously reproduced. Both inoculum daughter and foundress mites were collected from tan-bodied pupae and inoculated immediately. Therefore, our results suggest that phoresy is not required for reproduction in tropilaelaps mites. The ability of virgin females to lay both males and females (deuterotoky), and to reproduce without spending a phoretic period on adult bees may play major roles in tropilaelaps mites' competitive advantage over varroa mites in Apis mellifera colonies.


Asunto(s)
Abejas/parasitología , Ácaros/fisiología , Animales , Conducta Animal , Femenino , Reproducción/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA