RESUMEN
This article is temporarily under embargo.
RESUMEN
The increasing volume of information for cancer care, and the evolution of molecularly guided therapies, have increased the need for molecular tumor boards (MTBs), which can integrate such data into personalized treatment plans to improve patient outcomes. However, recommendations for improving the sustainability of MTBs are lacking. A diverse committee of MTB experts was assembled (February-March 2023), with extensive experience in sustainability in healthcare ecosystems. The aim was to identify MTB-related hurdles throughout the patient journey and develop a general framework for MTBs to operate on larger scales locally, nationally, and internationally. The committee identified ten key pillars for sustainable and scalable MTBs, including technical solutions for data integration and visualization, interoperability, learning loops, clinical trial access, legal considerations, criteria for patient testing, decision standardization, making MTBs official bodies for treatment decisions, local leaders, and international networks. The need for scalable frameworks at academic and community levels was recognized, along with integrating MTBs into national health systems to enhance sustainability and ensure optimal treatment decisions. Irrespective of the health ecosystem, the sustainability and scalability of MTBs are essential. Our framework provides guidelines to address this and to help MTBs evolve towards integrated, essential components of the oncology healthcare system.
RESUMEN
PURPOSE: The investigation of multiple molecular targets with next-generation sequencing (NGS) has entered clinical practice in oncology, yielding to a paradigm shift from the histology-centric approach to the mutational model for personalized treatment. Accordingly, most of the drugs recently approved in oncology are coupled to specific biomarkers. One potential tool for implementing the mutational model of precision oncology in daily practice is represented by the Molecular Tumor Board (MTB), a multidisciplinary team whereby molecular pathologists, biologists, bioinformaticians, geneticists, medical oncologists, and pharmacists cooperate to generate, interpret, and match molecular data with personalized treatments. PATIENTS AND METHODS: Since May 2020, the institutional MTB set at Fondazione IRCCS Istituto Nazionale Tumori of Milan met weekly via teleconference to discuss molecular data and potential therapeutic options for patients with advanced/metastatic solid tumors. RESULTS: Up to October 2021, among 1,996 patients evaluated, we identified >10,000 variants, 43.2% of which were functionally relevant (pathogenic or likely pathogenic). On the basis of functionally relevant variants, 711 patients (35.6%) were potentially eligible to targeted therapy according to European Society of Medical Oncology Scale for Clinical Actionability of Molecular Targets tiers, and 9.4% received a personalized treatment. Overall, larger NGS panels (containing >50 genes) significantly outperformed small panels (up to 50 genes) in detecting actionable gene targets across different tumor types. CONCLUSION: Our real-world data provide evidence that MTB is a valuable tool for matching NGS data with targeted treatments, eventually implementing precision oncology in clinical practice.
Asunto(s)
Neoplasias , Humanos , Medicina de Precisión , Atención al Paciente , Oncología Médica , Secuenciación de Nucleótidos de Alto RendimientoRESUMEN
Aim: Diagnostic laboratories are progressively introducing next-generation sequencing (NGS) technologies in the routine workflow to meet the increasing clinical need for comprehensive molecular characterization in cancer patients for diagnosis and precision medicine, including fusion-transcripts detection. Nevertheless, the low quality of messenger RNA (mRNA) extracted from formalin-fixed paraffin-embedded (FFPE) samples may affect the transition from traditional single-gene testing approaches [like fluorescence in situ hybridization (FISH), immunohistochemistry (IHC), or polymerase chain reaction (PCR)] to NGS. The present study is aimed at assessing the overall accuracy of RNA fusion transcripts detection by NGS analysis in FFPE samples in real-world diagnostics. Methods: Herein, NGS data from 190 soft tissue tumors (STTs) and carcinoma cases, discussed in the context of the institutional Molecular Tumor Board, are reported and analyzed by FusionPlex© Solid tumor kit through the manufacturer's pipeline and by two well-known fast and accurate open-source tools [Arriba (ARR) and spliced transcripts alignment to reference (STAR)-fusion (SFU)]. Results: The combination of FusionPlex© Solid tumor with ArcherDX® Analysis suite (ADx) analysis package has been proven to be sensitive and specific in STT samples, while partial loss of sensitivity has been found in carcinoma specimens. Conclusions: Albeit ARR and SFU showed lower sensitivity, the use of additional fusion-detection tools can contribute to reinforcing or extending the output obtained by ADx, particularly in the case of low-quality input data. Overall, our results sustain the clinical use of NGS for the detection of fusion transcripts in FFPE material.