Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Int J Mol Sci ; 23(22)2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36430969

RESUMEN

Rett syndrome caused by MECP2 variants is characterized by a heterogenous clinical spectrum accounted for in 60% of cases by hot-spot variants. Focusing on the most frequent variants, we generated in vitro iPSC-neurons from the blood of RTT girls with p.Arg133Cys and p.Arg255*, associated to mild and severe phenotype, respectively, and of an RTT male harboring the close to p.Arg255*, p.Gly252Argfs*7 variant. Truncated MeCP2 proteins were revealed by Western blot and immunofluorescence analysis. We compared the mutant versus control neurons at 42 days for morphological parameters and at 120 days for electrophysiology recordings, including girls' isogenic clones. A precocious reduced morphological complexity was evident in neurons with truncating variants, while in p.Arg133Cys neurons any significant differences were observed in comparison with the isogenic wild-type clones. Reduced nuclear size and branch number show up as the most robust biomarkers. Patch clamp recordings on mature neurons allowed the assessment of cell biophysical properties, V-gated currents, and spiking pattern in the mutant and control cells. Immature spiking, altered cell capacitance, and membrane resistance of RTT neurons, were particularly pronounced in the Arg255* and Gly252Argfs*7 mutants. The overall results indicate that the specific markers of in vitro cellular phenotype mirror the clinical severity and may be amenable to drug testing for translational purposes.


Asunto(s)
Células Madre Pluripotentes Inducidas , Síndrome de Rett , Masculino , Femenino , Humanos , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Neuronas , Fenotipo
2.
Int J Mol Sci ; 22(17)2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34502320

RESUMEN

Retinitis pigmentosa (RP) is a family of inherited disorders caused by the progressive degeneration of retinal photoreceptors. There is no cure for RP, but recent research advances have provided promising results from many clinical trials. All these therapeutic strategies are focused on preserving existing photoreceptors or substituting light-responsive elements. Vision recovery, however, strongly relies on the anatomical and functional integrity of the visual system beyond photoreceptors. Although the retinal structure and optic pathway are substantially preserved at least in early stages of RP, studies describing the visual cortex status are missing. Using a well-established mouse model of RP, we analyzed the response of visual cortical circuits to the progressive degeneration of photoreceptors. We demonstrated that the visual cortex goes through a transient and previously undescribed alteration in the local excitation/inhibition balance, with a net shift towards increased intracortical inhibition leading to improved filtering and decoding of corrupted visual inputs. These results suggest a compensatory action of the visual cortex that increases the range of residual visual sensitivity in RP.


Asunto(s)
Neurotransmisores/metabolismo , Células Fotorreceptoras de Vertebrados/patología , Retinitis Pigmentosa/patología , Sinaptosomas/patología , Corteza Visual/fisiopatología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Retinitis Pigmentosa/etiología , Retinitis Pigmentosa/metabolismo , Sinaptosomas/metabolismo
3.
J Gen Physiol ; 148(4): 293-311, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27619419

RESUMEN

The Ca(2+)-activated Cl(-) channel TMEM16B is highly expressed in the cilia of olfactory sensory neurons (OSNs). Although a large portion of the odor-evoked transduction current is carried by Ca(2+)-activated Cl(-) channels, their role in olfaction is still controversial. A previous report (Billig et al. 2011. Nat. Neurosci. http://dx.doi.org/10.1038/nn.2821) showed that disruption of the TMEM16b/Ano2 gene in mice abolished Ca(2+)-activated Cl(-) currents in OSNs but did not produce any major change in olfactory behavior. Here we readdress the role of TMEM16B in olfaction and show that TMEM16B knockout (KO) mice have behavioral deficits in odor-guided food-finding ability. Moreover, as the role of TMEM16B in action potential (AP) firing has not yet been studied, we use electrophysiological recording methods to measure the firing activity of OSNs. Suction electrode recordings from isolated olfactory neurons and on-cell loose-patch recordings from dendritic knobs of neurons in the olfactory epithelium show that randomly selected neurons from TMEM16B KO mice respond to stimulation with increased firing activity than those from wild-type (WT) mice. Because OSNs express different odorant receptors (ORs), we restrict variability by using a mouse line that expresses a GFP-tagged I7 OR, which is known to be activated by heptanal. In response to heptanal, we measure dramatic changes in the firing pattern of I7-expressing neurons from TMEM16B KO mice compared with WT: responses are prolonged and display a higher number of APs. Moreover, lack of TMEM16B causes a markedly reduced basal spiking activity in I7-expressing neurons, together with an alteration of axonal targeting to the olfactory bulb, leading to the appearance of supernumerary I7 glomeruli. Thus, TMEM16B controls AP firing and ensures correct glomerular targeting of OSNs expressing I7. Altogether, these results show that TMEM16B does have a relevant role in normal olfaction.


Asunto(s)
Potenciales de Acción/fisiología , Anoctaminas/metabolismo , Neuronas Receptoras Olfatorias/fisiología , Animales , Anoctaminas/genética , Conducta Alimentaria , Regulación de la Expresión Génica/fisiología , Ratones , Ratones Noqueados , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Olfato/fisiología
4.
J Neurosci ; 35(1): 146-60, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25568110

RESUMEN

The type of neuronal activity required for circuit development is a matter of significant debate. We addressed this issue by analyzing the topographic organization of the olfactory bulb in transgenic mice engineered to have very little afferent spontaneous activity due to the overexpression of the inwardly rectifying potassium channel Kir2.1 in the olfactory sensory neurons (Kir2.1 mice). In these conditions, the topography of the olfactory bulb was unrefined. Odor-evoked responses were readily recorded in glomeruli with reduced spontaneous afferent activity, although the functional maps were coarser than in controls and contributed to altered olfactory discrimination behavior. In addition, overexpression of Kir2.1 in adults induced a regression of the already refined connectivity to an immature (i.e., coarser) status. Our data suggest that spontaneous activity plays a critical role not only in the development but also in the maintenance of the topography of the olfactory bulb and in sensory information processing.


Asunto(s)
Red Nerviosa/fisiología , Odorantes , Bulbo Olfatorio/fisiología , Vías Olfatorias/fisiología , Vías Aferentes/química , Vías Aferentes/fisiología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Red Nerviosa/química , Bulbo Olfatorio/química , Vías Olfatorias/química , Receptores Odorantes/análisis , Receptores Odorantes/fisiología
5.
Front Cell Neurosci ; 5: 29, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22207837

RESUMEN

Down syndrome (DS) is the most common genetic disorder associated with mental retardation. It has been repeatedly shown that Ts65Dn mice, the prime animal model for DS, have severe cognitive and neural plasticity defects due to excessive inhibition. We report that increasing sensory-motor stimulation in adulthood through environmental enrichment (EE) reduces brain inhibition levels and promotes recovery of spatial memory abilities, hippocampal synaptic plasticity, and visual functions in adult Ts65Dn mice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA