Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Food Prot ; 86(6): 100089, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37024093

RESUMEN

Foodborne outbreak investigations have traditionally included the detection of a cluster of illnesses first, followed by an epidemiologic investigation to identify a food of interest. The increasing use of whole genome sequencing (WGS) subtyping technology for clinical, environmental, and food isolates of foodborne pathogens, and the ability to share and compare the data on public platforms, present new opportunities to identify earlier links between illnesses and their potential sources. We describe a process called sample-initiated retrospective outbreak investigations (SIROIs) used by federal public health and regulatory partners in the United States. SIROIs begin with an evaluation of the genomic similarity between bacterial isolates recovered from food or environmental samples and clusters of clinical isolates while subsequent and parallel epidemiologic and traceback investigations are initiated to corroborate their connection. SIROIs allow for earlier hypothesis generation, followed by targeted collection of information about food exposures and the foods and manufacturer of interest, to confirm a link between the illnesses and their source. This often leads to earlier action that could reduce the breadth and burden of foodborne illness outbreaks. We describe two case studies of recent SIROIs and present the benefits and challenges. Benefits include insight into foodborne illness attribution, international collaboration, and opportunities for enhanced food safety efforts in the food industry. Challenges include resource intensiveness, variability of epidemiologic and traceback data, and an increasingly complex food supply chain. SIROIs are valuable in identifying connections among small numbers of illnesses that may span significant time periods; detecting early signals for larger outbreaks or food safety issues associated with manufacturers; improving our understanding of the scope of contamination of foods; and identifying novel pathogen/commodity pairs.


Asunto(s)
Enfermedades Transmitidas por los Alimentos , Humanos , Estados Unidos , Estudios Retrospectivos , Enfermedades Transmitidas por los Alimentos/epidemiología , Enfermedades Transmitidas por los Alimentos/microbiología , Inocuidad de los Alimentos , Brotes de Enfermedades , Alimentos , Microbiología de Alimentos
2.
BMC Genomics ; 24(1): 165, 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37016310

RESUMEN

BACKGROUND: The Salmonella enterica serovar Newport red onion outbreak of 2020 was the largest foodborne outbreak of Salmonella in over a decade. The epidemiological investigation suggested two farms as the likely source of contamination. However, single nucleotide polymorphism (SNP) analysis of the whole genome sequencing data showed that none of the Salmonella isolates collected from the farm regions were linked to the clinical isolates-preventing the use of phylogenetics in source identification. Here, we explored an alternative method for analyzing the whole genome sequencing data driven by the hypothesis that if the outbreak strain had come from the farm regions, then the clinical isolates would disproportionately contain plasmids found in isolates from the farm regions due to horizontal transfer. RESULTS: SNP analysis confirmed that the clinical isolates formed a single, nearly-clonal clade with evidence for ancestry in California going back a decade. The clinical clade had a large core genome (4,399 genes) and a large and sparsely distributed accessory genome (2,577 genes, at least 64% on plasmids). At least 20 plasmid types occurred in the clinical clade, more than were found in the literature for Salmonella Newport. A small number of plasmids, 14 from 13 clinical isolates and 17 from 8 farm isolates, were found to be highly similar (> 95% identical)-indicating they might be related by horizontal transfer. Phylogenetic analysis was unable to determine the geographic origin, isolation source, or time of transfer of the plasmids, likely due to their promiscuous and transient nature. However, our resampling analysis suggested that observing a similar number and combination of highly similar plasmids in random samples of environmental Salmonella enterica within the NCBI Pathogen Detection database was unlikely, supporting a connection between the outbreak strain and the farms implicated by the epidemiological investigation. CONCLUSION: Horizontally transferred plasmids provided evidence for a connection between clinical isolates and the farms implicated as the source of the outbreak. Our case study suggests that such analyses might add a new dimension to source tracking investigations, but highlights the need for detailed and accurate metadata, more extensive environmental sampling, and a better understanding of plasmid molecular evolution.


Asunto(s)
Salmonella enterica , Serogrupo , Cebollas/genética , Granjas , Filogenia , Plásmidos/genética , Brotes de Enfermedades
3.
J Food Prot ; 86(5): 100079, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37003534

RESUMEN

In 2021, the U.S. Food and Drug Administration (FDA), the Centers for Disease Control and Prevention (CDC), and state partners investigated a multistate outbreak of Salmonella Typhimurium illnesses linked to packaged leafy greens from a controlled environment agriculture (CEA) operation in Illinois. Thirty-one illnesses and four hospitalizations were reported in four states, with a significant epidemiologic signal for packaged leafy greens from Farm A. A traceback investigation for leafy greens included seven points of service (POS) with food exposure data from eight ill people. Each POS was supplied leafy greens by Farm A. FDA investigators observed operations at Farm A and noted that 1) the firm did not consider their indoor hydroponic pond water as agricultural water, 2) condensate dripping from the chiller water supply line inside the building, and 3) unprotected outdoor storage of packaged soilless growth media and pallets used for finished product. FDA collected 25 product, water, and environmental samples from Farm A. The outbreak strain was recovered from a water sample collected from a stormwater drainage basin located on the property adjacent to Farm A. In addition, an isolate of Salmonella Liverpool was recovered from two indoor growing ponds within the same growing house, but no illnesses were linked to the isolate. Farm A voluntarily recalled all implicated products and provided their root cause analysis (RCA) and return-to-market plan to FDA. While the source and route of the contamination were not determined by the RCA, epidemiologic and traceback evidence confirmed the packaged salads consumed by ill persons were produced by Farm A. This was the first investigation of a multistate foodborne illness outbreak associated with leafy greens grown in a CEA operation. This outbreak demonstrated the need for growers using hydroponic methods to review their practices for potential sources and routes of contamination and to reduce food safety risks when identified.


Asunto(s)
Enfermedades Transmitidas por los Alimentos , Salmonella typhimurium , Humanos , Estados Unidos , Hidroponía , Enfermedades Transmitidas por los Alimentos/epidemiología , Agricultura/métodos , Brotes de Enfermedades
4.
PLoS One ; 17(9): e0268470, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36048885

RESUMEN

Food production facilities are often routinely tested over time for the presence of foodborne pathogens (e.g., Listeria monocytogenes or Salmonella enterica subsp. enterica). Strains detected in a single sampling event can be classified as transient; positive findings of the same strain across multiple sampling events can be classified as resident pathogens. We analyzed whole-genome sequence (WGS) data from 4,758 isolates (L. monocytogenes = 3,685; Salmonella = 1,073) from environmental samples taken by FDA from 536 U.S. facilities. Our primary objective was to determine the frequency of transient or resident pathogens within food production facilities. Strains were defined as isolates from the same facility that are less than 50 SNP (single-nucleotide polymorphisms) different from one another. Resident pathogens were defined as strains that had more than one isolate collected >59 days apart and from the same facility. We found 1,076 strains (median = 1 and maximum = 21 strains per facility); 180 were resident pathogens, 659 were transient, and 237 came from facilities that had only been sampled once. As a result, 21% of strains (180/ 839) from facilities with positive findings and that were sampled multiple times were found to be resident pathogens; nearly 1 in 4 (23%) of L. monocytogenes strains were found to be resident pathogens compared to 1 in 6 (16%) of Salmonella strains. Our results emphasize the critical importance of preventing the colonization of food production environments by foodborne pathogens, since when colonization does occur, there is an appreciable chance it will become a resident pathogen that presents an ongoing potential to contaminate product.


Asunto(s)
Listeria monocytogenes , Salmonella enterica , Manipulación de Alimentos , Microbiología de Alimentos , Variación Genética , Genoma Bacteriano , Listeria monocytogenes/genética , Salmonella/genética , Salmonella enterica/genética
5.
Front Microbiol ; 13: 797997, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35875579

RESUMEN

Whole-genome sequence databases continue to grow. Collection times between samples are also growing, providing both a challenge for comparing recently collected sequence data to historical samples and an opportunity for evolutionary analyses that can be used to refine match criteria. We measured evolutionary rates for 22 Salmonella enterica serotypes. Based upon these measurements, we propose using an evolutionary rate of 1.97 single-nucleotide polymorphisms (SNPs) per year when determining whether genome sequences match.

6.
J Food Prot ; 85(5): 755-772, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35259246

RESUMEN

ABSTRACT: This multiagency report developed by the Interagency Collaboration for Genomics for Food and Feed Safety provides an overview of the use of and transition to whole genome sequencing (WGS) technology for detection and characterization of pathogens transmitted commonly by food and for identification of their sources. We describe foodborne pathogen analysis, investigation, and harmonization efforts among the following federal agencies: National Institutes of Health; Department of Health and Human Services, Centers for Disease Control and Prevention (CDC) and U.S. Food and Drug Administration (FDA); and the U.S. Department of Agriculture, Food Safety and Inspection Service, Agricultural Research Service, and Animal and Plant Health Inspection Service. We describe single nucleotide polymorphism, core-genome, and whole genome multilocus sequence typing data analysis methods as used in the PulseNet (CDC) and GenomeTrakr (FDA) networks, underscoring the complementary nature of the results for linking genetically related foodborne pathogens during outbreak investigations while allowing flexibility to meet the specific needs of Interagency Collaboration partners. We highlight how we apply WGS to pathogen characterization (virulence and antimicrobial resistance profiles) and source attribution efforts and increase transparency by making the sequences and other data publicly available through the National Center for Biotechnology Information. We also highlight the impact of current trends in the use of culture-independent diagnostic tests for human diagnostic testing on analytical approaches related to food safety and what is next for the use of WGS in the area of food safety.


Asunto(s)
Enfermedades Transmitidas por los Alimentos , Animales , Brotes de Enfermedades/prevención & control , Inocuidad de los Alimentos , Enfermedades Transmitidas por los Alimentos/epidemiología , Enfermedades Transmitidas por los Alimentos/prevención & control , Genómica , Estados Unidos , Secuenciación Completa del Genoma
7.
Sci Adv ; 7(49): eabj9805, 2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34851675

RESUMEN

The bacterial foodborne pathogen Listeria monocytogenes clonal complex 1 (Lm-CC1) is the most prevalent clonal group associated with human listeriosis and is strongly associated with cattle and dairy products. Here, we analyze 2021 isolates collected from 40 countries, covering Lm-CC1 first isolation to present days, to define its evolutionary history and population dynamics. We show that Lm-CC1 spread worldwide from North America following the Industrial Revolution through two waves of expansion, coinciding with the transatlantic livestock trade in the second half of the 19th century and the rapid growth of cattle farming and food industrialization in the 20th century. In sharp contrast to its global spread over the past century, transmission chains are now mostly local, with limited inter- and intra-country spread. This study provides an unprecedented insight into L. monocytogenes phylogeography and population dynamics and highlights the importance of genome analyses for a better control of pathogen transmission.

8.
F1000Res ; 10: 80, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35847383

RESUMEN

Next Generation Sequencing technologies significantly impact the field of Antimicrobial Resistance (AMR) detection and monitoring, with immediate uses in diagnosis and risk assessment. For this application and in general, considerable challenges remain in demonstrating sufficient trust to act upon the meaningful information produced from raw data, partly because of the reliance on bioinformatics pipelines, which can produce different results and therefore lead to different interpretations. With the constant evolution of the field, it is difficult to identify, harmonise and recommend specific methods for large-scale implementations over time. In this article, we propose to address this challenge through establishing a transparent, performance-based, evaluation approach to provide flexibility in the bioinformatics tools of choice, while demonstrating proficiency in meeting common performance standards. The approach is two-fold: first, a community-driven effort to establish and maintain "live" (dynamic) benchmarking platforms to provide relevant performance metrics, based on different use-cases, that would evolve together with the AMR field; second, agreed and defined datasets to allow the pipelines' implementation, validation, and quality-control over time. Following previous discussions on the main challenges linked to this approach, we provide concrete recommendations and future steps, related to different aspects of the design of benchmarks, such as the selection and the characteristics of the datasets (quality, choice of pathogens and resistances, etc.), the evaluation criteria of the pipelines, and the way these resources should be deployed in the community.


Asunto(s)
Benchmarking , Secuenciación de Nucleótidos de Alto Rendimiento , Antibacterianos/farmacología , Biología Computacional/métodos , Farmacorresistencia Bacteriana/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
9.
Microbiology (Reading) ; 166(5): 453-459, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32100709

RESUMEN

In 2017, the US Food and Drug Administration investigated the sources of multiple outbreaks of salmonellosis. Epidemiologic and traceback investigations identified Maradol papayas as the suspect vehicles. During the investigations, the genomes of 55 Salmonella enterica that were isolated from papaya samples were sequenced. Serovar assignments and phylogenetic analysis placed the 55 isolates into ten distinct groups, each representing a different serovar. Within-serovar SNP differences are generally between 0 and 20 SNPs, while the median between-serovar distance is 51 812 SNPs. We observed two groups with SNP distances between 21 and 100 SNPs. These relatively large within-serovar SNP distances may indicate that the isolates represent either diverse populations or multiple, genetically distinct subpopulations. Further inspection of these cases with traceback evidence allowed us to identify an 11th population. We observed that high levels of genomic diversity from individual firms is possible, with one firm yielding five of the ten serovars. Also, high levels of diversity are possible within small geographic regions, as five of the serovars were isolated from papayas that originated from farms located in Armería and Tecomán, Colima. In addition, we identified AMR genes that are present in three of the serovars studied here (aph(3')-lb, aph(6)-ld, tet(C), fosA7, and qnrB19) and we detected the presence of the plasmid IncHI2A among S. Urbana isolates.


Asunto(s)
Carica/microbiología , Variación Genética , Infecciones por Salmonella/microbiología , Salmonella enterica/clasificación , Salmonella enterica/genética , Brotes de Enfermedades , Contaminación de Alimentos , Genoma Bacteriano , Genotipo , Humanos , Filogenia , Polimorfismo de Nucleótido Simple , Infecciones por Salmonella/epidemiología , Salmonella enterica/aislamiento & purificación , Serogrupo , Estados Unidos/epidemiología , Secuenciación Completa del Genoma
10.
Genome Biol ; 20(1): 286, 2019 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-31849328

RESUMEN

Although it is assumed that contamination in bacterial whole-genome sequencing causes errors, the influences of contamination on clustering analyses, such as single-nucleotide polymorphism discovery, phylogenetics, and multi-locus sequencing typing, have not been quantified. By developing and analyzing 720 Listeria monocytogenes, Salmonella enterica, and Escherichia coli short-read datasets, we demonstrate that within-species contamination causes errors that confound clustering analyses, while between-species contamination generally does not. Contaminant reads mapping to references or becoming incorporated into chimeric sequences during assembly are the sources of those errors. Contamination sufficient to influence clustering analyses is present in public sequence databases.


Asunto(s)
Contaminación de ADN , Genoma Bacteriano , Secuenciación Completa del Genoma , Análisis por Conglomerados , Escherichia coli/genética , Listeria monocytogenes/genética , Salmonella enterica/genética
11.
J Food Prot ; 81(12): 2082-2089, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30485763

RESUMEN

Food production-related facilities (farms, packing houses, etc.) are monitored for foodborne pathogens, and data from these facilities can provide a rich source of information about the population structure and genetic diversity of Salmonella and Listeria. This information is of both academic interest for understanding the evolutionary forces acting on these organisms and of practical interest to those responsible for controlling pathogens in facilities and to those analyzing data from facilities in the context of public health decision making. We have collected information about all positive isolates from facility inspections performed by the U.S. Food and Drug Administration for which whole genome sequencing data are available. The within- and between-facilities observed genetic diversity of isolates was computed and related to the common origin of isolates (as the common collected facility). This relationship provides quantification for assessing the relationship between isolates based on their genetic similarity quantified by single-nucleotide polymorphisms (SNPs). Our results show that if the genetic distance ( D) between two isolates is low, then more likely than not they are from the same facility or have some overlap in their supply chain. For example, if the genetic distance is no more than 20 SNPs, the probability ( P) that two isolates come from the same facility = 0.66 for Salmonella and 0.70 for Listeria. However, if two isolates come from different facilities, their genetic distance is likely large (for Salmonella, P( D > 20 SNPs) = 0.99982; for Listeria, P( D > 20 SNPs) = 0.99949); even if two isolates come from the same facility, their genetic distance is also very likely large (for Salmonella, P( D > 20 SNPs) = 0.794; for Listeria, P( D > 20 SNPs) = 0.692). These results provide insight into what SNP thresholds might be appropriate when determining whether two isolates are from the same facility and thus would be of interest to those investigating foodborne outbreaks and conducting traceback investigations.


Asunto(s)
Contaminación de Equipos , Industria de Procesamiento de Alimentos , Listeria , Salmonella , Enfermedades Transmitidas por los Alimentos , Variación Genética , Genoma Bacteriano , Humanos , Listeria/genética , Listeria/aislamiento & purificación , Polimorfismo de Nucleótido Simple , Salmonella/genética , Salmonella/aislamiento & purificación
12.
BMC Genomics ; 19(1): 708, 2018 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-30253738

RESUMEN

BACKGROUND: Listeria monocytogenes is a widespread foodborne pathogen that can cause listeriosis, a potentially fatal infection. L. monocytogenes is subdivided into four phylogenetic lineages, with the highest incidence of listeriosis occurring within lineage I followed by lineage II. Strains of L. monocytogenes differ in their phenotypic characteristics, including virulence. However, the genetic bases for these observed differences are not well understood, and current efforts to monitor L. monocytogenes in food consider all strains to be equally virulent. We use a comparative genomics approach to identify genes and single nucleotide polymorphisms (SNPs) in 174 clinical and food isolates of L. monocytogenes that potentially contribute to virulence or the capacity to adapt to food environments. RESULTS: No SNPs are significantly associated with food or clinical isolates. No genes are significantly associated with food or clinical isolates from lineage I, but eight genes consisting of multiple homologues are associated with lineage II food isolates. These include three genes which encode hypothetical proteins, the cadmium resistance genes cadA and cadC, the multi-drug resistance gene ebrB, a quaternary ammonium compound resistance gene qac, and a regulatory gene. All eight genes are plasmid-borne, and most closed L. monocytogenes plasmids carry at least five of the genes (24/27). In addition, plasmids are more frequently associated with lineage II food isolates than with lineage II clinical isolates. CONCLUSIONS: We identify eight genes that are significantly associated with food isolates in lineage II. Interestingly, the eight genes are virtually absent in lineage II outbreak isolates, are composed of homologues which show a nonrandom distribution among lineage I serotypes, and the sequences are highly conserved across 27 closed Listeria plasmids. The functions of these genes should be explored further and will contribute to our understanding of how L. monocytogenes adapts to the host and food environments. Moreover, these genes may also be useful as markers for risk assessment models of either pathogenicity or the ability to proliferate in food and the food processing environment.


Asunto(s)
Microbiología de Alimentos , Listeria monocytogenes/genética , Brotes de Enfermedades , Genes Bacterianos , Humanos , Listeria monocytogenes/clasificación , Listeria monocytogenes/aislamiento & purificación , Listeria monocytogenes/patogenicidad , Listeriosis/epidemiología , Listeriosis/microbiología , Polimorfismo de Nucleótido Simple , Serogrupo , Estrés Fisiológico/genética , Virulencia/genética
13.
Front Microbiol ; 9: 1482, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30042741

RESUMEN

Whole-genome sequence (WGS) analysis has revolutionized the food safety industry by enabling high-resolution typing of foodborne bacteria. Higher resolving power allows investigators to identify origins of contamination during illness outbreaks and regulatory activities quickly and accurately. Government agencies and industry stakeholders worldwide are now analyzing WGS data routinely. Although researchers have published many studies that assess the efficacy of WGS data analysis for source attribution, guidance for interpreting WGS analyses is lacking. Here, we provide the framework for interpreting WGS analyses used by the Food and Drug Administration's Center for Food Safety and Applied Nutrition (CFSAN). We based this framework on the experiences of CFSAN investigators, collaborations and interactions with government and industry partners, and evaluation of the published literature. A fundamental question for investigators is whether two or more bacteria arose from the same source of contamination. Analysts often count the numbers of nucleotide differences [single-nucleotide polymorphisms (SNPs)] between two or more genome sequences to measure genetic distances. However, using SNP thresholds alone to assess whether bacteria originated from the same source can be misleading. Bacteria that are isolated from food, environmental, or clinical samples are representatives of bacterial populations. These populations are subject to evolutionary forces that can change genome sequences. Therefore, interpreting WGS analyses of foodborne bacteria requires a more sophisticated approach. Here, we present a framework for interpreting WGS analyses that combines SNP counts with phylogenetic tree topologies and bootstrap support. We also clarify the roles of WGS, epidemiological, traceback, and other evidence in forming the conclusions of investigations. Finally, we present examples that illustrate the application of this framework to real-world situations.

14.
PLoS Biol ; 15(9): e2003769, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28892507

RESUMEN

Blastocystis is the most prevalent eukaryotic microbe colonizing the human gut, infecting approximately 1 billion individuals worldwide. Although Blastocystis has been linked to intestinal disorders, its pathogenicity remains controversial because most carriers are asymptomatic. Here, the genome sequence of Blastocystis subtype (ST) 1 is presented and compared to previously published sequences for ST4 and ST7. Despite a conserved core of genes, there is unexpected diversity between these STs in terms of their genome sizes, guanine-cytosine (GC) content, intron numbers, and gene content. ST1 has 6,544 protein-coding genes, which is several hundred more than reported for ST4 and ST7. The percentage of proteins unique to each ST ranges from 6.2% to 20.5%, greatly exceeding the differences observed within parasite genera. Orthologous proteins also display extreme divergence in amino acid sequence identity between STs (i.e., 59%-61% median identity), on par with observations of the most distantly related species pairs of parasite genera. The STs also display substantial variation in gene family distributions and sizes, especially for protein kinase and protease gene families, which could reflect differences in virulence. It remains to be seen to what extent these inter-ST differences persist at the intra-ST level. A full 26% of genes in ST1 have stop codons that are created on the mRNA level by a novel polyadenylation mechanism found only in Blastocystis. Reconstructions of pathways and organellar systems revealed that ST1 has a relatively complete membrane-trafficking system and a near-complete meiotic toolkit, possibly indicating a sexual cycle. Unlike some intestinal protistan parasites, Blastocystis ST1 has near-complete de novo pyrimidine, purine, and thiamine biosynthesis pathways and is unique amongst studied stramenopiles in being able to metabolize α-glucans rather than ß-glucans. It lacks all genes encoding heme-containing cytochrome P450 proteins. Predictions of the mitochondrion-related organelle (MRO) proteome reveal an expanded repertoire of functions, including lipid, cofactor, and vitamin biosynthesis, as well as proteins that may be involved in regulating mitochondrial morphology and MRO/endoplasmic reticulum (ER) interactions. In sharp contrast, genes for peroxisome-associated functions are absent, suggesting Blastocystis STs lack this organelle. Overall, this study provides an important window into the biology of Blastocystis, showcasing significant differences between STs that can guide future experimental investigations into differences in their virulence and clarifying the roles of these organisms in gut health and disease.


Asunto(s)
Blastocystis/genética , Genoma de Protozoos , Blastocystis/metabolismo , Metabolismo de los Hidratos de Carbono , Codón de Terminación , Microbioma Gastrointestinal , Humanos , Intrones , Especificidad de la Especie
15.
J AOAC Int ; 100(3): 721-731, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28105974

RESUMEN

The application of new data streams generated from next-generation sequencing (NGS) has been demonstrated for food microbiology, pathogen identification, and illness outbreak detection. The establishment of best practices for data integrity, reproducibility, and traceability will ensure reliable, auditable, and transparent processes underlying food microbiology risk management decisions. We outline general principles to guide the use of NGS data in support of microbiological food safety. Regulatory authorities across intra- and international jurisdictions can leverage this effort to promote the reliability, consistency, and transparency of processes used in the derivation of genomic information for regulatory food safety purposes, and to facilitate interactions and the transfer of information in the interest of public health.


Asunto(s)
Inocuidad de los Alimentos , Genómica , Brotes de Enfermedades , Microbiología de Alimentos , Reproducibilidad de los Resultados
16.
PLoS One ; 11(11): e0166162, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27832109

RESUMEN

The adoption of whole-genome sequencing within the public health realm for molecular characterization of bacterial pathogens has been followed by an increased emphasis on real-time detection of emerging outbreaks (e.g., food-borne Salmonellosis). In turn, large databases of whole-genome sequence data are being populated. These databases currently contain tens of thousands of samples and are expected to grow to hundreds of thousands within a few years. For these databases to be of optimal use one must be able to quickly interrogate them to accurately determine the genetic distances among a set of samples. Being able to do so is challenging due to both biological (evolutionary diverse samples) and computational (petabytes of sequence data) issues. We evaluated seven measures of genetic distance, which were estimated from either k-mer profiles (Jaccard, Euclidean, Manhattan, Mash Jaccard, and Mash distances) or nucleotide sites (NUCmer and an extended multi-locus sequence typing (MLST) scheme). When analyzing empirical data (whole-genome sequence data from 18,997 Salmonella isolates) there are features (e.g., genomic, assembly, and contamination) that cause distances inferred from k-mer profiles, which treat absent data as informative, to fail to accurately capture the distance between samples when compared to distances inferred from differences in nucleotide sites. Thus, site-based distances, like NUCmer and extended MLST, are superior in performance, but accessing the computing resources necessary to perform them may be challenging when analyzing large databases.


Asunto(s)
Genoma Bacteriano/genética , Tipificación de Secuencias Multilocus/métodos , Salmonella/genética , Análisis de Secuencia de ADN/métodos , Animales , Biología Computacional/métodos , Humanos , Filogenia , Reproducibilidad de los Resultados , Salmonella/clasificación , Salmonella/fisiología , Infecciones por Salmonella/microbiología , Especificidad de la Especie , Factores de Tiempo
17.
Genome Announc ; 4(5)2016 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-27634991

RESUMEN

Listeria monocytogenes is a pathogenic bacterium of importance to public health and food safety agencies. We present the genome sequence of the serotype 1/2a L. monocytogenes food isolate HPB913, which was collected in Canada in 1993 as part of an investigation into a sporadic case of foodborne illness.

18.
Genome Announc ; 4(4)2016 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-27491990

RESUMEN

Listeria monocytogenes is a foodborne pathogen that causes severe illness. Thus, ongoing efforts at real-time whole-genome sequencing are of utmost importance. However, it is also important that retrospective analyses that place these data into context be performed. Here, we present the genome sequence of strain HPB2088, which was collected in 1994.

19.
BMC Res Notes ; 8: 748, 2015 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-26643440

RESUMEN

BACKGROUND: The influences that different programs and conditions have on error rates of single-nucleotide polymorphism (SNP) analyses are poorly understood. Using Illumina short-read sequence data generated from Listeria monocytogenes strain HPB5622, we assessed the performance of four SNP callers (BCFtools, FreeBayes, UnifiedGenotyper, VarScan) under a variety of conditions, including: (1) a range of sequencing coverages; (2) use of four popular reference-guided assemblers (Burrows-Wheeler Aligner, Novoalign, MOSAIK, SMALT); (3) with and without read quality trimming and filtering; and (4) use of different reference sequences. RESULTS: At 8-fold coverage the proportions of true positive calls ranged from 0.22 to 25.00 % when reads were aligned to a nearly identical reference (0.000096 % distant). Calls made when reads were aligned to a non-identical reference (0.85 % distant) were from 92.54 to 98.88 % accurate. At 79-fold coverage accuracies ranged from 3.95 to 20.00 % with the nearly identical reference and 93.80-98.75 % with the non-identical reference. Read preprocessing significantly changed the numbers of false positive calls made, from a 65.24 % decrease to a 54.55 % increase. CONCLUSIONS: The combinations of reference-guided sequence assemblers and SNP callers greatly influenced not only the numbers of true and false positive sites but also the proportions of true positive calls relative to the total numbers of calls made. Furthermore, the efficacy of different assembler and caller combinations changed dramatically with the different conditions tested. Researchers should consider whether identifying the greatest numbers of true positive sites, reducing the numbers of false positive calls, or achieving the highest accuracies are desired.


Asunto(s)
Listeria monocytogenes/genética , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN/normas , Genes Bacterianos
20.
BMC Microbiol ; 15: 224, 2015 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-26490433

RESUMEN

BACKGROUND: Next-generation sequencing provides a powerful means of molecular characterization. However, methods such as single-nucleotide polymorphism detection or whole-chromosome sequence analysis are computationally expensive, prone to errors, and are still less accessible than traditional typing methods. Here, we present the Listeria monocytogenes core-genome sequence typing method for molecular characterization. This method uses a high-confidence core (HCC) genome, calculated to ensure accurate identification of orthologs. We also developed an evolutionarily relevant nomenclature based upon phylogenetic analysis of HCC genomes. Finally, we created a pipeline (LmCGST; https://sourceforge.net/projects/lmcgst/files/) that takes in raw next-generation sequencing reads, calculates a subject HCC profile, compares it to an expandable database, assigns a sequence type, and performs a phylogenetic analysis. RESULTS: We analyzed 29 high-quality, closed Listeria monocytogenes chromosome sequences and identified loci that are reliable targets for automated molecular characterization methods. We identified 1013 open-reading frames that comprise our high-confidence core (HCC) genome. We then populated a database with HCC profiles from 114 taxa. We sequenced 84 randomly selected isolates from the Listeriosis Reference Service for Canada's collection and analysed them with the LmCGST pipeline. In addition, we generated pulsed-field gel electrophoresis, ribotyping, and in silico multi-locus sequence typing (MLST) data for the 84 isolates and compared the results to those obtained using the CGST method. We found that all of the methods yielded results that are generally congruent. However, due to the increased numbers of categories, the CGST method provides much greater discriminatory power than the other methods tested here. CONCLUSIONS: We show that the CGST method provides increased discriminatory power relative to typing methods such as pulsed-field gel electrophoresis, ribotyping, and multi-locus sequence typing while it addresses several shortcomings of other methods of molecular characterization with next-generation sequence data. It uses discrete, well-defined groupings (types) of organisms that are phylogenetically relevant and easily interpreted. In addition, the CGST scheme can be expanded to include additional loci and HCC profiles in the future. In total, the CGST method provides an approach to the molecular characterization of Listeria monocytogenes with next-generation sequence data that is highly reproducible, easily standardized, portable, and accessible.


Asunto(s)
Biología Computacional/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Listeria monocytogenes/clasificación , Listeria monocytogenes/genética , Tipificación Molecular/métodos , Análisis de Secuencia de ADN , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA