Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Microbiol Resour Announc ; 13(4): e0129523, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38411070

RESUMEN

Two cat nasal swabs from Canada's earliest confirmed SARS-CoV-2 positive domestic cats were sequenced to over 99% SARS-CoV-2 genome coverage. One cat had lineage A.23.1 SARS-CoV-2 not reported before in animals. Both sequences have multiple spike gene mutations and clustered closely with human-derived sequences in the global SARS-CoV-2 phylogenetic tree.

2.
Sci Rep ; 14(1): 715, 2024 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-38184728

RESUMEN

Domestic pigs are a critical component of the food supply and one of the most commonly raised production animals. Pork consumption has driven the intensification of pig production expanding into environments conducive to increased emergence and spread of infectious diseases, including the spillover of pathogens into human populations. One of these emerging viruses, Reston virus (RESTV), is an enigma among the Orthoebolavirus genus in that its lack of human pathogenicity is in stark contrast to the high virulence associated with most other ebolaviruses. RESTV is, however, associated with outbreaks of highly lethal hemorrhagic disease in non-human primates (NHP), as well as poorly understood clinical manifestations of mixed virulence and lethality in naturally and experimentally infected domestic pigs. Our results show it is possible for RESTV derived from an NHP to infect domestic pigs resulting in a spectrum of disease, from asymptomatic to severe respiratory distress. Further, we report on the first experimental transmission of RESTV between infected pigs and a co-housed, naïve animal, as well as the first report of the successful use of group oral fluids for the detection of RESTV RNA and virus-specific IgA antibodies.


Asunto(s)
Trastornos Hemorrágicos , Sus scrofa , Porcinos , Animales , Inmunoglobulina A , Primates
3.
Emerg Microbes Infect ; 13(1): 2302103, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38189080

RESUMEN

Crimean-Congo haemorrhagic fever orthonairovirus (CCHFV) is a tick-borne, risk group 4 pathogen that often causes a severe haemorrhagic disease in humans (CCHF) with high case fatality rates. The virus is believed to be maintained in a tick-vertebrate-tick ecological cycle involving numerous wild and domestic animal species; however the biology of CCHFV infection in these animals remains poorly understood. Here, we experimentally infect domestic sheep with CCHFV Kosovo Hoti, a clinical isolate representing high pathogenicity to humans and increasingly utilized in current research. In the absence of prominent clinical signs, the infection leads to an acute viremia and coinciding viral shedding, fever and markers for potential impairment in liver and kidney functions. A number of host responses distinguish the subclinical infection in sheep versus fatal infection in humans. These include an early reduction of neutrophil recruitment and its chemoattractant, IL-8, in the blood stream of infected sheep, whereas neutrophil infiltration and elevated IL-8 are features of fatal CCHFV infections reported in immunodeficient mice and humans. Several inflammatory cytokines that correlate with poor disease outcomes in humans and have potential to cause vascular dysfunction, a primary hallmark of severe CCHF, are down-regulated or restricted from increasing in sheep. Of particular interest, the detection of CCHFV RNA (including full-length genome) in a variety of sheep tissues long after the acute phase of infection indicates a widespread viral dissemination in the host and suggests a potentially long-term persisting impact of CCHFV infection. These findings reveal previously unrecognized aspects of CCHFV biology in animals.


Asunto(s)
Virus de la Fiebre Hemorrágica de Crimea-Congo , Fiebre Hemorrágica de Crimea , Garrapatas , Humanos , Animales , Ratones , Ovinos , Fiebre Hemorrágica de Crimea/diagnóstico , Oveja Doméstica/genética , ARN Viral/genética , Kosovo , Interleucina-8
4.
Front Vet Sci ; 10: 1120367, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36816187

RESUMEN

Introduction: Nipah virus (NiV) and Hendra virus (HeV), of the genus Henipavirus, family Paramyxoviridae, are classified as Risk Group 4 (RG4) pathogens that cause respiratory disease in pigs and acute/febrile encephalitis in humans with high mortality. Methods: A competitive enzyme-linked immunosorbent assay (cELISA) using a monoclonal antibody (mAb) and recombinant NiV glycoprotein (G) was developed and laboratory evaluated using sera from experimental pigs, mini pigs and nonhuman primates. The test depends on competition between specific antibodies in positive sera and a virus-specific mAb for binding to NiV-G. Results: Based on 1,199 negative and 71 NiV positive serum test results, the cutoff value was determined as 35% inhibition. The diagnostic sensitivity and specificity of the NiV cELISA was 98.58 and 99.92%, respectively. When testing sera from animals experimentally infected with NiV Malaysia, the cELISA detected antibodies from 14 days post-infection (dpi) and remained positive until the end of the experiment (28 dpi). Comparisons using the Kappa coefficient showed strong agreement (100%) between the cELISA and a plaque reduction neutralization test (PRNT). Discussion: Because our cELISA is simpler, faster, and gives comparable or better results than PRNT, it would be an adequate screening test for suspect NiV and HeV cases, and it would also be useful for epidemiological surveillance of Henipavirus infections in different animal species without changing reagents.

6.
Nat Microbiol ; 7(12): 2011-2024, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36357713

RESUMEN

Wildlife reservoirs of broad-host-range viruses have the potential to enable evolution of viral variants that can emerge to infect humans. In North America, there is phylogenomic evidence of continual transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from humans to white-tailed deer (Odocoileus virginianus) through unknown means, but no evidence of transmission from deer to humans. We carried out an observational surveillance study in Ontario, Canada during November and December 2021 (n = 300 deer) and identified a highly divergent lineage of SARS-CoV-2 in white-tailed deer (B.1.641). This lineage is one of the most divergent SARS-CoV-2 lineages identified so far, with 76 mutations (including 37 previously associated with non-human mammalian hosts). From a set of five complete and two partial deer-derived viral genomes we applied phylogenomic, recombination, selection and mutation spectrum analyses, which provided evidence for evolution and transmission in deer and a shared ancestry with mink-derived virus. Our analysis also revealed an epidemiologically linked human infection. Taken together, our findings provide evidence for sustained evolution of SARS-CoV-2 in white-tailed deer and of deer-to-human transmission.


Asunto(s)
COVID-19 , Ciervos , Animales , Humanos , SARS-CoV-2/genética
7.
Sci Rep ; 11(1): 9387, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33931684

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), calls for prompt and accurate diagnosis and rapid turnaround time for test results to limit transmission. Here, we evaluated two independent molecular assays, the Biomeme SARS-CoV-2 test, and the Precision Biomonitoring TripleLock SARS-CoV-2 test on a field-deployable point-of-care real-time PCR instrument, Franklin three9, in combination with Biomeme M1 Sample Prep Cartridge Kit for RNA 2.0 (M1) manual extraction system for rapid, specific, and sensitive detection of SARS-COV-2 in cell culture, human, and animal clinical samples. The Biomeme SARS-CoV-2 assay, which simultaneously detects two viral targets, the orf1ab and S genes, and the Precision Biomonitoring TripleLock SARS-CoV-2 assay that targets the 5' untranslated region (5' UTR) and the envelope (E) gene of SARS-CoV-2 were highly sensitive and detected as low as 15 SARS-CoV-2 genome copies per reaction. In addition, the two assays were specific and showed no cross-reactivity with Middle Eastern respiratory syndrome coronavirus (MERS-CoV), infectious bronchitis virus (IBV), porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis (TGE) virus, and other common human respiratory viruses and bacterial pathogens. Also, both assays were highly reproducible across different operators and instruments. When used to test animal samples, both assays equally detected SARS-CoV-2 genetic materials in the swabs from SARS-CoV-2-infected hamsters. The M1 lysis buffer completely inactivated SARS-CoV-2 within 10 min at room temperature enabling safe handling of clinical samples. Collectively, these results show that the Biomeme and Precision Biomonitoring TripleLock SARS-CoV-2 mobile testing platforms could reliably and promptly detect SARS-CoV-2 in both human and animal clinical samples in approximately an hour and can be used in remote areas or health care settings not traditionally serviced by a microbiology laboratory.


Asunto(s)
COVID-19/diagnóstico , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , SARS-CoV-2/aislamiento & purificación , Animales , Tampones (Química) , Cricetinae , Humanos , Aplicaciones Móviles , Juego de Reactivos para Diagnóstico , SARS-CoV-2/genética , Sensibilidad y Especificidad , Factores de Tiempo
8.
Transbound Emerg Dis ; 68(4): 1711-1720, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33915034

RESUMEN

Rabbit haemorrhagic disease virus 2 (RHDV2) is a newly emerging Lagovirus belonging to the family Caliciviridae. After its first discovery in 2010 in France, this highly pathogenic virus rapidly spread to neighbouring countries and has become the dominant strain, replacing the classical RHDV strains. RHDV2 was first reported in North America in 2016 in Mont-Joli, Quebec, Canada, and it was reported again in 2018 and 2019 on Vancouver Island and the southwest mainland of British Columbia (BC). The whole genome sequence of the RHDV2 Quebec isolate resembled the 2011 RHDV2-N11 isolate from Navarra, Spain with 97% identity at the nucleotide level. The epidemiological investigation related to this outbreak involved three hobby farms and one personal residence in Quebec. In February 2018, high mortality was reported in a large colony of feral rabbits on the Vancouver Island University Campus, Nanaimo, BC. The virus identified showed only 93% identity to the Quebec RHDV2 isolate at the nucleotide level. Additional cases of RHDV2 on Vancouver Island and on the BC mainland affecting feral and captive domestic, and commercial rabbits were reported subsequently. Vaccination was recommended to control the outbreak and an inactivated bivalent vaccine was made available to the private veterinary practices. In June 2019, an isolated RHDV2 outbreak was reported in pet rabbits in an apartment building in Vancouver, BC. This virus showed only 97% identity to the RHDV2 isolates responsible for the BC outbreak in 2018 at the nucleotide level, suggesting that it was an independent incursion. The outbreak in BC killed a large number of feral European rabbits; however, there were no confirmed cases of RHD in native rabbit species in BC.


Asunto(s)
Infecciones por Caliciviridae , Virus de la Enfermedad Hemorrágica del Conejo , Lagovirus , Animales , Colombia Británica , Infecciones por Caliciviridae/epidemiología , Infecciones por Caliciviridae/veterinaria , Virus de la Enfermedad Hemorrágica del Conejo/genética , Filogenia , Conejos
9.
Nat Commun ; 12(1): 724, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33526784

RESUMEN

Recent advances in cell-free synthetic biology have given rise to gene circuit-based sensors with the potential to provide decentralized and low-cost molecular diagnostics. However, it remains a challenge to deliver this sensing capacity into the hands of users in a practical manner. Here, we leverage the glucose meter, one of the most widely available point-of-care sensing devices, to serve as a universal reader for these decentralized diagnostics. We describe a molecular translator that can convert the activation of conventional gene circuit-based sensors into a glucose output that can be read by off-the-shelf glucose meters. We show the development of new glucogenic reporter systems, multiplexed reporter outputs and detection of nucleic acid targets down to the low attomolar range. Using this glucose-meter interface, we demonstrate the detection of a small-molecule analyte; sample-to-result diagnostics for typhoid, paratyphoid A/B; and show the potential for pandemic response with nucleic acid sensors for SARS-CoV-2.


Asunto(s)
Técnicas Biosensibles/métodos , Redes Reguladoras de Genes/genética , Glucosa/análisis , Ácidos Nucleicos/análisis , Sistemas de Atención de Punto , Pruebas en el Punto de Atención , Técnicas Biosensibles/instrumentación , COVID-19/diagnóstico , COVID-19/epidemiología , COVID-19/virología , Glucosa/metabolismo , Humanos , Ácidos Nucleicos/genética , Pandemias , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/fisiología , Fiebre Tifoidea/sangre , Fiebre Tifoidea/diagnóstico , Fiebre Tifoidea/microbiología
10.
Emerg Infect Dis ; 27(1): 104-112, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33350904

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the agent that causes coronavirus disease, has been shown to infect several species. The role of domestic livestock and associated risks for humans in close contact with food production animals remains unknown for many species. Determining the susceptibility of pigs to SARS-CoV-2 is critical to a One Health approach to manage potential risk for zoonotic transmission. We found that pigs are susceptible to SARS-CoV-2 after oronasal inoculation. Among 16 animals, we detected viral RNA in group oral fluids and in nasal wash from 2 pigs, but live virus was isolated from only 1 pig. Antibodies also were detected in only 2 animals at 11 and 13 days postinoculation but were detected in oral fluid samples at 6 days postinoculation, indicating antibody secretion. These data highlight the need for additional livestock assessment to determine the potential role of domestic animals in the SARS-CoV-2 pandemic.


Asunto(s)
Anticuerpos Antivirales/sangre , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , ARN Viral/sangre , SARS-CoV-2/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Susceptibilidad a Enfermedades/veterinaria , Femenino , Ganglios Linfáticos/virología , Masculino , Boca/virología , Cavidad Nasal/virología , Recto/virología , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/fisiología , Porcinos , Esparcimiento de Virus
11.
Front Vet Sci ; 7: 137, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32411730

RESUMEN

Rift Valley Fever virus (RVFV) is a zoonotic mosquito-borne virus that belongs to the Phenuiviridae family. Infections in animal herds cause abortion storms, high mortality rates in neonates, and mild to severe symptoms. Infected animals can also transmit the virus to people, particularly people who live or work in close contact with livestock. There is currently an ongoing effort to produce safe and efficacious veterinary vaccines against RVFV in livestock to protect against both primary infection in animals and zoonotic infections in people. To test the efficacy of these vaccines it is essential to have a reliable challenge model in relevant target species, including ruminants. In this study we evaluated three routes of inoculation (intranasal, intradermal and a combination of routes) in Holstein cattle using an infectious dose of 107 pfu/ml and a virus strain from the 2006-2007 outbreak in Kenya and Sudan. Our results demonstrated that all routes of inoculation were effective at producing viremia in all animals; however, the intranasal route induced the highest levels and longest duration of viremia, the most noticeable clinical signs, and the most widespread infection of tissues. We therefore recommend using the intranasal inoculation for future vaccine and challenge studies.

12.
Microbiologyopen ; 4(4): 660-81, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26131925

RESUMEN

Legionella pneumophila, a causative agent of Legionnaires' disease, is a facultative intracellular parasite of freshwater protozoa. Legionella pneumophila features a unique developmental network that involves several developmental forms including the infectious cyst forms. Reservoirs of L. pneumophila include natural and man-made freshwater systems; however, recent studies have shown that isolates of L. pneumophila can also be obtained directly from garden potting soil suggesting the presence of an additional reservoir. A previous study employing the metazoan Caenorhabditis elegans, a member of the Rhabditidae family of free-living soil nematodes, demonstrated that the intestinal lumen can be colonized with L. pneumophila. While both replicative forms and differentiated forms were observed in C. elegans, these morphologically distinct forms were initially observed to be restricted to the intestinal lumen. Using live DIC imaging coupled with focused transmission electron microscopy analyses, we report here that L. pneumophila is able to invade and establish Legionella-containing vacuoles (LCVs) in the intestinal cells. In addition, LCVs containing replicative and differentiated cyst forms were observed in the pseudocoelomic cavity and gonadal tissue of nematodes colonized with L. pneumophila. Furthermore, establishment of LCVs in the gonadal tissue was Dot/Icm dependent and required the presence of the endocytic factor RME-1 to gain access to maturing oocytes. Our findings are novel as this is the first report, to our knowledge, of extraintestinal LCVs containing L. pneumophila cyst forms in C. elegans tissues, highlighting the potential of soil-dwelling nematodes as an alternate environmental reservoir for L. pneumophila.


Asunto(s)
Caenorhabditis elegans/microbiología , Legionella pneumophila/aislamiento & purificación , Vacuolas/microbiología , Animales , Tracto Gastrointestinal/microbiología , Gónadas/microbiología , Microscopía Electrónica de Transmisión , Microscopía de Interferencia , Suelo/parasitología
13.
J Immunol Methods ; 405: 167-77, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24556589

RESUMEN

Highly pathogenic avian influenza virus (HPAI) and virulent forms of avian paramyxovirus-1 (APMV-1) cause serious illnesses in domestic poultry, both of which are reportable to the World Organization of Animal Health (OIE). The clinical presentation of avian influenza (AI) and APMV-1 infections are difficult to differentiate, emphasizing the importance of rapid and sensitive serologic assays that are able to distinguish them. Currently, a variety of serological assays are used for the serologic diagnosis of both diseases, but these assays are not used in multiplex formats. In this study, development of a duplex fluorescent microsphere immunoassay (FMIA) based on Luminex xMAP Technology is described. The assay employs MagPlex magnetic microspheres that are covalently coated with recombinant avian influenza virus nucleoprotein and APMV-1 nucleocapsid antigens produced in a baculovirus insect cell expression system. The assay is able to detect AIV antibodies against all existing hemagglutinin (H1-H16) subtypes and simultaneously detect antibodies against APMV-1. In the process of this assay development different bead coupling conditions were compared. The assay has the capability of detecting serum antibodies from chickens and turkeys and optimization was accomplished by using 2462 chicken and 446 turkey field and experimental sera and had a comparable detection capability with currently used assays in the laboratory. Assay threshold values were calculated with Receiver Operating Characteristic Analysis (ROC) in non-parametric analysis due to a highly skewed data distribution; this analysis resulted in AIV nucleoprotein relative diagnostic sensitivity and specificity of 99.7%, and 97.3% respectively. The APMV-1 nucleocapsid relative diagnostic sensitivity and specificity were 95.4%, and 98.5% respectively.


Asunto(s)
Anticuerpos Antivirales/inmunología , Inmunoensayo/métodos , Virus de la Influenza A/inmunología , Virus de la Enfermedad de Newcastle/inmunología , Animales , Anticuerpos Antivirales/sangre , Formación de Anticuerpos , Western Blotting , Pollos , Fluorescencia , Virus de la Influenza A/genética , Virus de la Influenza A/metabolismo , Gripe Aviar/sangre , Gripe Aviar/diagnóstico , Gripe Aviar/inmunología , Microesferas , Enfermedad de Newcastle/sangre , Enfermedad de Newcastle/diagnóstico , Enfermedad de Newcastle/inmunología , Virus de la Enfermedad de Newcastle/genética , Virus de la Enfermedad de Newcastle/metabolismo , Proteínas de la Nucleocápside/genética , Proteínas de la Nucleocápside/inmunología , Proteínas de la Nucleocápside/metabolismo , Curva ROC , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo , Reproducibilidad de los Resultados , Células Sf9 , Spodoptera , Pavos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA