RESUMEN
Urban effluent potential toxicity was assessed by a battery of biomarkers aimed at determining sub-lethal effects after continuous exposure on the marine organism Solea senegalensis. Specimens were exposed to five effluent concentrations (1/2, 1/4, 1/8, 1/16, 1/32) during 7-days, simulating the dispersion plume at the discharge point. Three different groups of biomarkers were selected in the present study: biomarkers of exposure (Phase I: EROD and DBF; Phase II: GST), biomarkers with antioxidant responses (GR and GPX) and biomarkers of effects (DNA damage and LPO). Additionally, a biological depuration treatment (photobiotreatment (PhtBio)) was tested in order to reduce the adverse effects on aquatic organisms. Effluent exposure caused sub-lethal responses in juvenile fish suggesting oxidative stress. After PhtBio application, concentrations of the major part of measured contaminants were reduced, as well as their bioavailability and adverse effects.
RESUMEN
In recent years, increasing quantities of personal care products (PCPs) are being released into the environment. However, data about bioaccumulation and toxicity are scarce; and extraction and analytical approaches are not well developed. In this work, the marine clam Ruditapes philippinarum, selected as model organism, has been employed to investigate bioaccumulation, antioxidant enzyme activities and DNA damage due to exposure to TiO2 nanoparticles and bulk TiO2 (inorganic compounds that are frequent components of PCPs, plastics, paints and coatings, foods and disinfectant water treatments). We have also studied the joint effect of both forms of inorganic TiO2 combined with four organic compounds (mixture exposures) commonly used in PCPs: an antimicrobial (triclosan), a fragrance (OTNE) and two UV filters (benzophenone-3 and octocrylene). Bioaccumulation of the inorganic compound, TiO2, was almost immediate and constant over exposure time. With respect to the organic compounds in mixtures, they were mediated by TiO2 and bioaccumulation is driven by reduced size of the particles. In fact, nanoparticles can be considered as a vector to organic compounds, such as triclosan and benzophenone-3. After a week of depuration, TiO2 NPs and TiO2 bulk in clams showed similar levels of concentration. Some organic compounds with bioactivity (Log Kow >3), like OTNE, showed low depuration after one week. The joint action of the organic compound mixture and either of the two forms of TiO2 provoked changes in enzyme activity responses. However, for the mixtures, DNA damage was found only after the depuration period.
Asunto(s)
Bivalvos/metabolismo , Daño del ADN/efectos de los fármacos , Nanopartículas/química , Titanio/farmacocinética , Contaminantes Químicos del Agua/farmacocinética , Animales , Antioxidantes/metabolismo , Bivalvos/química , Bivalvos/enzimología , Nanopartículas/toxicidad , Oxidorreductasas/metabolismo , Titanio/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidadRESUMEN
Emerging contaminants (ECs) and regulated compounds (RCs) from three different WWTP effluents were measured in the current study. The efficiency of two tertiary treatments, Photobiotreatment (PhtBio) and Multi-Barrier Treatment (MBT), for removing contaminants was determined. Results indicated different percentages of removal depending on the treatment and the origin of the effluent. Risk Quotients (RQs) were determined for different species of algae, Daphnia, and fish. RQ results revealed diverse risk values depending on the bioindicator species. Tonalide, galaxolide (fragrances), and ofloxacin (antibiotic) were the most persistent and harmful substances in tested effluents. "Negligible risk" category was reached since a wide diversity of ECs were removed by MBT with high removal percentages. Contrarily, PhtBio was effective only in the depuration of certain chemical compounds, and its efficiency depended on the composition of the raw effluent.