Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Antibiotics (Basel) ; 13(4)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38667047

RESUMEN

The antimicrobial effect of eight essential oils' vapors against pathogens and spoilage bacteria was assayed. Oreganum vulgare L. essential oil (OVO) showed a broad antibacterial effect, with Minimum Inhibitory Concentration (MIC) values ranging from 94 to 754 µg cm-3 air, depending on the bacterial species. Then, gaseous OVO was used for the treatment of stainless steel, polypropylene, and glass surfaces contaminated with four bacterial pathogens at 6-7 log cfu coupon-1. No viable cells were found after OVO treatment on all food-contact surfaces contaminated with all pathogens, with the exception of Sta. aureus DSM 799 on the glass surface. The antimicrobial activity of OVO after the addition of beef extract as a soiling agent reduced the Sta. aureus DSM 799 viable cell count by more than 5 log cfu coupon-1 on polypropylene and glass, while no viable cells were found in the case of stainless steel. HS-GC-MS analysis of the headspace of the boxes used for the antibacterial assay revealed 14 different volatile compounds with α-Pinene (62-63%), and p-Cymene (21%) as the main terpenes. In conclusion, gaseous OVO could be used for the microbial decontamination of food-contact surfaces, although its efficacy needs to be evaluated since it depends on several parameters such as target microorganisms, food-contact material, temperature, time of contact, and relative humidity.

2.
World J Microbiol Biotechnol ; 39(10): 258, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37493825

RESUMEN

Onion skins, actually recycled as organic fertilizers, could be used as a substrate in environmental-friendly bioprocesses to recover high-value bioactive compounds and food ingredients.In this work, a bioprospecting method was carried out including 94 bacterial and 45 yeast strains from several agri-food and environmental niches to verify their ability to grow on onion skins as unique nutrients source.Red and yellow onion skins were assessed by newly selected starter-driven liquid submerged fermentation assays mainly aimed at the release and modification of polyphenols through microbial activities. Fermented onion skins were also investigated as a inexpensive favourable source of microbial enzymes (amylases, proteases, lipases, esterases, cellulases, xylanases).In red onion skins, the treatment with Lactiplantibacillus plantarum TB 11-32 produced a slight increase of bioactive compounds in terms of total phenolics, whereas with the yeast strain Zygosaccharomyces mrakii CL 30 - 29 the quercetin aglycone content increased of about 25% of the initial raw material.In yellow onion skins inoculated, the highest content of phenolic compounds was detected with the yeast strain Saccharomyces cerevisiae En SC, while quercetin aglycone increased of about 60% of the initial raw material in presence of the bacterial strain L. plantarum C 180 - 34.In conclusion, the proposed microbial pre-treatment method can be a potential strategy to re-use onion skins as a fermentation substrate, and as a first step in the development of a biorefinery process to produce value-added products from onion by-products.


Asunto(s)
Polifenoles , Saccharomyces cerevisiae , Fermentación , Quercetina , Cebollas/química , Fenoles
3.
Foods ; 12(12)2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37372527

RESUMEN

The increasing demand for natural, safe, and sustainable food preservation methods drove research towards the use of plant antimicrobials as an alternative to synthetic preservatives. This review article comprehensively discussed the potential applications of plant extracts, essential oils, and their compounds as antimicrobial agents in the food industry. The antimicrobial properties of several plant-derived substances against foodborne pathogens and spoilage microorganisms, along with their modes of action, factors affecting their efficacy, and potential negative sensory impacts, were presented. The review highlighted the synergistic or additive effects displayed by combinations of plant antimicrobials, as well as the successful integration of plant extracts with food technologies ensuring an improved hurdle effect, which can enhance food safety and shelf life. The review likewise emphasized the need for further research in fields such as mode of action, optimized formulations, sensory properties, safety assessment, regulatory aspects, eco-friendly production methods, and consumer education. By addressing these gaps, plant antimicrobials can pave the way for more effective, safe, and sustainable food preservation strategies in the future.

4.
Plants (Basel) ; 12(8)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37111846

RESUMEN

Golden thistle (Scolymus hispanicus L.) is a wild edible plant belonging to Asteraceae family, with a great potential for food applications. The aim of this study was to identify the best cooking procedure able to provide a high-quality, ready-to-use product. For this purpose, leaf midribs (the most used edible part of the plant) were cooked by boiling, steaming, and 'sous vide', and the cooked products were compared for their phenolic content and composition, antioxidant activity, sugar and inorganic ion content, organoleptic characteristics, and microbial safety, this latter also during storage. In general, boiling caused a decrease in the value of these parameters, despite being the best product for taste and overall acceptability. On the contrary, steaming and 'sous vide' resulted in the best treatments to preserve antioxidant activity, total phenols, and chlorogenic acid. In particular, in 'sous vide' cooked samples, a significant increase in the value of these parameters and a remarkable decrease in nitrate content were found. Moreover, 'sous vide' resulted in the best treatment also regarding microbial safety during shelf life; actually, after 15 days of storage at 8 °C, Enterobacteriaceae and mesophilic aerobic bacteria were not detectable in 'sous vide' samples. These results contributed to increase the knowledge of a wild edible plant with high nutritional properties and promoting its consumption by obtaining a ready-to-use product with good organoleptic characteristics and endowed with a long period of shelf life.

5.
Foods ; 11(21)2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36359959

RESUMEN

In this study, the effect of selected Lactobacillus acidophilus ATCC 4356, Limosilactobacillus fermentum DSM 20052, and Lacticaseibacillus paracasei subsp. paracasei DSM 20312 strains on the sensory characteristics, and protein and amino acid content of fermented water extracts derived from lupin, pea, and bean grains is reported. Even though all strains were able to grow over 7 log cfu mL-1 and to decrease pH in the range of -0.52 to -1.25 within 24 h, the release of an unpleasant ferric-sulfurous off-odor from the fermented bean water extract prohibited further characterization. Lupin and pea grain-based beverages underwent an in-depth sensory evaluation using a simplified check-all-that-apply (CATA) method, finding new and appreciable sensory notes such as cooked ham, almonds, and sandalwood. Fermented lupin water extract showed higher total protein content (on average, 0.93 mg mL-1) in comparison to that of pea grains (on average, 0.08 mg mL-1), and a free amino acid content (on average, 3.9 mg mL-1) close to that of cow milk. The concentrations of these nutrients decreased during refrigerated storage, when the lactic acid bacteria load was always higher than 7 log cfu mL-1. The results of this study indicated that lactic fermentation improves the sensory characteristics of these innovative legume-based beverages, which sustained high loads of viable lactobacilli up to the end of cold storage.

6.
Heliyon ; 8(5): e09551, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35663747

RESUMEN

In this work, the development, analytical characterization and bioactivity of zeolite-thymol composites, obtained using wet, semi-dry and dry processes, were carried out in order to obtain sustainable and powerful antimicrobial additives. FT-IR, XRD, DSC, TGA, SEM and B.E.T. analyses were carried out to gain comprehensive information on the chemical-physical, thermal, and morphological features of the composites. GC-MS analyses allowed quantifying the active molecule loaded in the zeolite, released by the functionalized composites and its stability over time. Among the three procedures, the dry approach allowed to reach the highest thymol loading content and efficiency (49.8 ± 1.6% and 99.6 ± 1.2%, respectively), as well as the highest composite specific surface area value, feature which promises the best interaction between the surface of the composite and the bacterial population. Therefore, the bioactive surface of composites obtained by this solvent-free method was assayed for its antimicrobial activity against four microbial strains belonging to Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Candida albicans species. The higher antimicrobial activity produced by the solvent-free composite in comparison with that of pure thymol, at the same thymol concentration, was ascribed to the large interfacial contact between the composite and the bacterial target. This feature, together with its enhanced storage stability, suggested that this composite could be employed as effective additives for the development of antimicrobial biointerfaces for food, home and personal care applications.

7.
Molecules ; 26(19)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34641461

RESUMEN

Wine pomace has attracted the attention of the food industry, due to its high content in bioactive compounds, and its multiple healthy activities. In this work, whole and separated skin pomaces from fermented (red) and un-fermented (white) grape by-products were characterized for their antioxidant and antimicrobial activities in order to exploit them as functional food ingredient. Antioxidant activity, measured by both ORAC and TEAC assays, was higher in whole than in skin pomace extracts. The characterization of phenolic composition in whole and skin pomace extracts confirmed the peculiarity of some compounds such as anthocyanins (107.84 + 10.3 mg/g TP) in red skin pomace and a great amount of flavanols (80.73 + 4.04 mg/g TP) in white skin pomace. Whole and skin pomace extracts displayed the same antibacterial activity at 250 µg gallic acid equivalents (GAE)/mL. Red and white skin pomace extracts showed a Minimum Inhibitory Concentration (MIC) of 31.25-62.5 GAE/mL against Staphylococcus aureus and Enterococcus faecalis. Pseudomonas spp. were more sensitive to red skin pomace extracts rather than white skin pomace extracts. Given these results, both red and white pomace extracts could be exploited for future application in food, pharmaceutical and cosmetic industry.


Asunto(s)
Antibacterianos/farmacología , Antioxidantes/farmacología , Bacterias/efectos de los fármacos , Frutas/química , Extractos Vegetales/farmacología , Vitis/química , Color
8.
Molecules ; 26(16)2021 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-34443489

RESUMEN

Hydrogel formulations (masks or patches, without tissue support) represent the new frontier for customizable skin beauty and health. The employment of these materials is becoming popular in wound dressing, to speed up the healing process while protecting the affected area, as well as to provide a moisturizing reservoir, control the inflammatory process and the onset of bacterial development. Most of these hydrogels are acrylic-based at present, not biodegradable and potentially toxic, due to acrylic monomers residues. In this work, we selected a new class of cellulose-derived and biodegradable hydrogel films to incorporate and convey an active compound for dermatological issues. Films were obtained from a combination of different polysaccharides and clays, and berberine hydrochloride, a polyphenolic molecule showing anti-inflammatory, immunomodulatory, antibacterial and antioxidant properties, was chosen and then embedded in the hydrogel films. These innovative hydrogel-based systems were characterized in terms of water uptake profile, in vitro cytocompatibility and skin permeation kinetics by Franz diffusion cell. Berberine permeation fitted well to Korsmeyer-Peppas kinetic model and achieved a release higher than 100 µg/cm2 within 24 h. The latter study, exploiting a reliable skin model membrane, together with the biological assessment, gained insights into the most promising formulation for future investigations.


Asunto(s)
Berberina/administración & dosificación , Sistemas de Liberación de Medicamentos , Metilgalactósidos/química , Piel/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Células HaCaT , Humanos , Cinética , Permeabilidad , Fibras de Estrés/efectos de los fármacos , Fibras de Estrés/metabolismo , Difracción de Rayos X
9.
Molecules ; 25(20)2020 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-33081360

RESUMEN

The aim of this work was to evaluate the antifungal activity in vapor phase of thymol, p-cymene, and γ-terpinene, the red thyme essential oil compounds (RTOCs). The Minimum Inhibitory Concentration (MIC) of RTOCs was determined against postharvest spoilage fungi of the genera Botrytis, Penicillium, Alternaria, and Monilinia, by measuring the reduction of the fungal biomass after exposure for 72 h at 25 °C. Thymol showed the lowest MIC (7.0 µg/L), followed by γ-terpinene (28.4 µg/L) and p-cymene (40.0 µg/L). In the case of P. digitatum ITEM 9569, resistant to commercial RTO, a better evaluation of interactions among RTOCs was performed using the checkerboard assay and the calculation of the Fractional Inhibitory Concentration Index (FICI). During incubation, changes in the RTOCs concentration were measured by GC-MS analysis. A synergistic effect between thymol (0.013 ± 0.003 L/L) and γ-terpinene (0.990 ± 0.030 L/L) (FICI = 0.50) in binary combinations, and between p-cymene (0.700 ± 0.010 L/L) and γ-terpinene (0.290 ± 0.010 L/L) in presence of thymol (0.008 ± 0.001 L/L) (FICI = 0.19), in ternary combinations was found. The synergistic effect against the strain P. digitatum ITEM 9569 suggests that different combinations among RTOCs could be defined to control fungal strains causing different food spoilage phenomena.


Asunto(s)
Antifúngicos/química , Aceites Volátiles/farmacología , Aceites de Plantas/química , Thymus (Planta)/química , Antifúngicos/farmacología , Botrytis/efectos de los fármacos , Botrytis/patogenicidad , Sinergismo Farmacológico , Cromatografía de Gases y Espectrometría de Masas , Pruebas de Sensibilidad Microbiana , Monoterpenos/química , Monoterpenos/farmacología , Aceites Volátiles/química , Penicillium/efectos de los fármacos , Penicillium/patogenicidad , Aceites de Plantas/farmacología
10.
Int J Food Microbiol ; 215: 179-86, 2015 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-26453993

RESUMEN

The microbial content of plant tissues has been reported to cause the spoilage of ca. 30% of chlorine-disinfected fresh vegetables during cold storage. The aim of this work was to evaluate the efficacy of antimicrobial peptides in controlling microbial vegetable spoilage under cold storage conditions. A total of 48 bacterial isolates were collected from ready-to-eat (RTE) vegetables and identified as belonging to Acinetobacter calcoaceticus, Aeromonas media, Pseudomonas cichorii, Pseudomonas fluorescens, Pseudomonas jessenii, Pseudomonas koreensis, Pseudomonas putida, Pseudomonas simiae and Pseudomonas viridiflava species. Reddish or brownish pigmentation was found when Pseudomonas strains were inoculated in wounds on leaves of Iceberg and Trocadero lettuce and escarole chicory throughout cold storage. Bovine lactoferrin (BLF) and its hydrolysates (LFHs) produced by pepsin, papain and rennin, were assayed in vitro against four Pseudomonas spp. strains selected for their heavy spoiling ability. As the pepsin-LFH showed the strongest antimicrobial effect, subsequent experiments were carried out using the peptide lactoferricin B (LfcinB), well known to be responsible for its antimicrobial activity. LfcinB significantly reduced (P ≤ 0.05) spoilage by a mean of 36% caused by three out of four inoculated spoiler pseudomonads on RTE lettuce leaves after six days of cold storage. The reduction in the extent of spoilage was unrelated to viable cell density in the inoculated wounds. This is the first paper providing direct evidence regarding the application of an antimicrobial peptide to control microbial spoilage affecting RTE leafy vegetables during cold storage.


Asunto(s)
Antibacterianos/farmacología , Conservación de Alimentos/métodos , Conservantes de Alimentos/farmacología , Lactoferrina/farmacología , Pseudomonas/efectos de los fármacos , Verduras/microbiología , Acinetobacter/aislamiento & purificación , Aeromonas/aislamiento & purificación , Cloro/farmacología , Frío , Recuento de Colonia Microbiana , Desinfectantes/farmacología , Contaminación de Alimentos/prevención & control , Lactuca/microbiología , Pseudomonas/clasificación , Pseudomonas/aislamiento & purificación
11.
Food Microbiol ; 50: 102-8, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25998822

RESUMEN

In the present study, we evaluated the antimicrobial activity of neutral electrolyzed water (NEW) against 14 strains of spoilage Pseudomonas of fresh cut vegetables under cold storage. The NEW, produced from solutions of potassium and sodium chloride, and sodium bicarbonate developed up to 4000 mg/L of free chlorine, depending on the salt and relative concentration used. The antimicrobial effect of the NEW was evaluated against different bacterial strains at 10(5) cells/ml, with different combinations of free chlorine concentration/contact time; all concentrations above 100 mg/L, regardless of the salt used, were found to be bactericidal already after 2 min. When catalogna chicory and lettuce leaves were dipped for 5 min in diluted NEW, microbial loads of mesophilic bacteria and Enterobacteriaceae were reduced on average of 1.7 log cfu/g. In addition, when lettuce leaves were dipped in a cellular suspension of the spoiler Pseudomonas chicorii I3C strain, diluted NEW was able to reduce Pseudomonas population of about 1.0 log cfu/g. Thanks to its high antimicrobial activity against spoilage microorganisms, and low cost of operation, the application of cycles of electrolysis to the washing water looks as an effective tool in controlling fresh cut vegetable microbial spoilage contamination occurring during washing steps.


Asunto(s)
Cloro/análisis , Enterobacteriaceae/fisiología , Contaminación de Alimentos/prevención & control , Pseudomonas/fisiología , Verduras/microbiología , Agua/química , Carga Bacteriana , Cichorium intybus/microbiología , Recuento de Colonia Microbiana , Desinfectantes/análisis , Electrólisis/economía , Electrólisis/métodos , Enterobacteriaceae/efectos de los fármacos , Microbiología de Alimentos/métodos , Lactuca/microbiología , Cloruro de Potasio/análisis , Bicarbonato de Sodio/análisis , Cloruro de Sodio/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA