RESUMEN
BACKGROUND/OBJECTIVES: Brazil and Mozambique face similar socioeconomic challenges, including common indicators of undernutrition and overnutrition among children. This study evaluated the similarity degree of the anthropometric and body composition variables of Brazilian and Mozambican children by using the Jaccard index. METHODS: A total of 1831 children of both genders aged 7-10 years from three Brazilian cities (Recife, Vitoria de Santo Antao, and Lagoa do Carro) and three Mozambican cities (Maputo, Boane, and Inhambane) participated in this study. Anthropometric (height, body mass, and waist circumference) and body composition (body fat percentage [%BF], lean mass, and fat mass) variables were measured and the Smoothed Jaccard Index Surface (SJIS) was used to evaluate the similarity degree. RESULTS: Brazilian children were taller and heavier and had a higher %BF and fat mass than Mozambican children. Children living in urban areas were taller than those living in rural zones in both countries. Brazilian and Mozambican children showed high similarity only between %BF and lean mass. Children from Recife and Maputo had high similarities among waist circumference, body mass, fat mass, height, and %BF. Finally, a high SJIS degree was observed among height and %BF for schoolchildren from rural and urban zones. CONCLUSION: Brazilian and Mozambican children exhibit differences in growth characteristics but a high degree of similarity when children from rural and urban zones are compared.
RESUMEN
(1) Background: Dysregulated serum amino acids (AA) are known to be associated with obesity and risk of Type 2 Diabetes (T2D) in adults, and recent studies support the same notion in the pubertal age. It is, however, unknown whether childhood overweight may already display alterations of circulating AA. (2) Methods: We used liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS)-targeted metabolomics to determine plasma concentrations of AA and AA-related molecules in 36 children aged 7-12 years with normal weight or overweight. Clinical and anthropometric parameters were measured. (3) Results: Overweight in children is associated with an altered AA profile, with increased branched-chain amino acids (BCAA) and decreased glycine levels, with no clinically manifested metabolic conditions. Moreover, z-BMI was positively and negatively correlated with BCAA and glycine levels, respectively, even after adjustment for age and gender. We also found a correlation between the AA profile and clinical parameters such as lipids profile and glycemia. (4) Conclusions: A pattern of low glycine, and increased BCAA is correlated to z-BMI, total cholesterol, and triglycerides in overweight but otherwise healthy children. Our data suggest that, in childhood overweight, AA disturbances may precede other clinical parameters, thus providing an early indicator for the later development of metabolic disease.
Asunto(s)
Aminoácidos de Cadena Ramificada , Aminoácidos , Glicina , Sobrepeso , Obesidad Infantil , Humanos , Niño , Femenino , Masculino , Glicina/sangre , Aminoácidos de Cadena Ramificada/sangre , Aminoácidos/sangre , Sobrepeso/sangre , Obesidad Infantil/sangre , Índice de Masa Corporal , Espectrometría de Masas en Tándem , Cromatografía Liquida , Metabolómica/métodos , Triglicéridos/sangreRESUMEN
Obesity is often associated with adipose tissue (AT) inflammation and immune cell infiltration. Writing recently in Cell Reports, Liao et al. investigated the mechanisms of T cell infiltration of AT using single cell (sc)RNA-sequencing (RNA-seq), transplantation studies, in vitro co-cultures, and knock-out mice. They highlighted the crucial role of C-C motif chemokine ligand 5 (CCL5)-secreting adipose stem cells (ASCs), offering insights for potential therapies.
RESUMEN
BACKGROUND/AIMS: Endothelial cells (ECs) play a crucial role in various physiological processes, particularly those related to the cardiovascular system, but also those affecting the entire organism. The biology of ECs is regulated by multiple biochemical stimuli and epigenetic drivers that govern gene expression. We investigated the angiogenic potential of ECs from a protein citrullination perspective, regulated by peptidyl-arginine deiminases (PADs) that modify histone and non-histone proteins. Although the involvement of PADs has been demonstrated in several physiological processes, inflammation-related disorders and cancer, their role in angiogenesis remains unclear. METHODS: To elucidate the role of PADs in endothelial angiogenesis, we used two human EC models: primary vein (HUVECs) and microvascular endothelial cells (HMEC-1). PADs activity was inhibited using irreversible inhibitors: BB-Cl-amidine, Cl-amidine and F-amidine. We analyzed all three steps of angiogenesis in vitro : proliferation, migration, and capillary-like tube formation, as well as secretory activities, gene expression and signaling in ECs. RESULTS: All used PAD inhibitors reduced the histone H3 citrullination (H3cit) mark, inhibited endothelial cell migration and capillary-like tube formation, and favored an angiostatic activity in HMEC-1 cells, by increasing PEDF (pigment epithelium-derived factor) and reducing VEGF (vascular endothelial growth factor) mRNA expression and protein secretion. Additionally, BB-Cl-amidine reduced the total activity of MMPs (Matrix metalloproteinases). The observed effects were underlined by the inhibition of Akt phosphorylation.>. CONCLUSION: Our findings suggest that pharmacological inhibitors of citrullination are promising therapeutic agents to target angiogenesis.
Asunto(s)
Células Endoteliales , Desiminasas de la Arginina Proteica , Proteínas Proto-Oncogénicas c-akt , Humanos , Células Endoteliales/metabolismo , Histonas/metabolismo , Desiminasas de la Arginina Proteica/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Amidinas/química , Amidinas/farmacología , Inhibidores de la Angiogénesis/química , Inhibidores de la Angiogénesis/farmacologíaRESUMEN
The impact of diets high in saturated fatty acids in individuals who have undergone maternal protein restriction is not clear. Here, we tested the hypothesis that a saturated fatty acid-enriched hyperlipidic diet (HL) affects liver expression of genes of the redox balance and inflammatory pathway in postweaning rat offspring subjected to maternal protein restriction. Pregnant Wistar rats received either a control (C; 19% protein) or low protein (LP; 8% protein) diet during gestation and lactation. At weaning, pups received either C or HL diets up to 90 days of life. The LP+HL group showed an upregulation of transcription of peroxisome proliferator-activated receptor γ (+48%) and peroxisome proliferator-activated receptor γ coactivator α (+96%) compared with the LP+C group (P < .05), respectively. Similarly, gene expression of the markers of inflammation, nuclear factor-kappa B1 (+194%) and tumor necrosis factor-α (+192%), was enhanced (P < .05). Although other antioxidant enzymes were not modified in gene expression, catalase (CAT) was 66% higher in LP+HL compared with LP+C. In contrast, CAT protein content in the liver was 50% lower in LP groups compared with C, and superoxide dismutase 2 (SOD2) was twice as high in LP groups compared with C. Postweaning HL after maternal protein restriction induces hepatic metabolic adaptation characterized by enhanced oxidative stress, unbalanced expression in the antioxidant enzymes SOD1, SOD2 and CAT, and activation of inflammatory pathways but does not impact circulating markers of lipid metabolism and liver function.
Asunto(s)
Ácidos Grasos , Deficiencia de Proteína , Embarazo , Femenino , Ratas , Animales , Ácidos Grasos/metabolismo , Ratas Wistar , Antioxidantes/metabolismo , PPAR gamma/metabolismo , Hígado/metabolismo , Estrés Oxidativo , Dieta con Restricción de Proteínas/efectos adversos , Deficiencia de Proteína/metabolismoRESUMEN
The discovery of leptin in the 1990s led to a reconsideration of adipose tissue (AT) as not only a fatty acid storage organ, but also a proper endocrine tissue. AT is indeed capable of secreting bioactive molecules called adipokines for white AT or batokines for brown/beige AT, which allow communication with numerous organs, especially brain, heart, liver, pancreas, and/or the vascular system. Adipokines exert pro or anti-inflammatory activities. An equilibrated balance between these two sets ensures homeostasis of numerous tissues and organs. During the development of obesity, AT remodelling leads to an alteration of its endocrine activity, with increased secretion of pro-inflammatory adipokines relative to the anti-inflammatory ones, as shown in the graphical abstract. Pro-inflammatory adipokines take part in the initiation of local and systemic inflammation during obesity and contribute to comorbidities associated to obesity, as detailed in the present review.
Asunto(s)
Adipoquinas , Obesidad , Humanos , Tejido Adiposo , Tejido Adiposo Pardo , Tejido Adiposo Blanco , HígadoRESUMEN
For many years, it has been clear that a Western diet rich in saturated fats and sugars promotes an inflammatory environment predisposing a person to chronic cardiometabolic diseases. In parallel, the emergence of ketogenic diets, deprived of carbohydrates and promoting the synthesis of ketone bodies imitating the metabolic effects of fasting, has been shown to provide a possible nutritional solution to alleviating diseases triggered by an inflammatory environment. The main ketone body, ß-hydroxybutyrate (BHB), acts as an alternative fuel, and also as a substrate for a novel histone post-translational modification, ß-hydroxybutyrylation. ß-hydroxybutyrylation influences the state of chromatin architecture and promotes the transcription of multiple genes. BHB has also been shown to modulate inflammation in chronic diseases. In this review, we discuss, in the pathological context of cardiovascular risks, the current understanding of how ketone bodies, or a ketogenic diet, are able to modulate, trigger, or inhibit inflammation and how the epigenome and chromatin remodeling may be a key contributor.
Asunto(s)
Dieta Cetogénica , Cuerpos Cetónicos , Humanos , Cuerpos Cetónicos/metabolismo , Ácido 3-Hidroxibutírico/farmacología , Epigenómica , InflamaciónRESUMEN
The ketogenic diet (KD), a high-fat, low-carbohydrate dietary approach that is based on the induction of extensive ketone bodies (KB) metabolism, is recently receiving a lot of attention due to its application as effective intervention for multiple metabolic disorders including cardiovascular diseases. Despite its already established clinical use, especially in the treatment of drug-resistant epilepsy, GLUT1 deficiency syndromes and, in selected cases, obesity; the systemic impact of is not yet fully understood. Here, we discuss the evidence for and against the application of ketogenic diets, or ketone bodies precursors, in the etiology of hypertension and endothelial cells dysfunction. We attempt to identify the benefits and potential risks of chronic use of the ketogenic diet, also considering the molecular effects that KB exerts at multiple levels.
Asunto(s)
Errores Innatos del Metabolismo de los Carbohidratos , Dieta Cetogénica , Hipertensión , Humanos , Cuerpos Cetónicos , Células EndotelialesRESUMEN
The relationship between body weight gain and the onset of obesity is linked to environmental and behavioral factors, and may be dependent on biological predisposing. Artificial neural networks are useful predictive tools in the field of artificial intelligence, and can be used to identify risk factors related to obesity. The aim of this study is to establish, based on artificial neural networks, a predictive model for overweight/obesity in children based on the recognition and selection of patterns associated with birth weight, gestational age, height deficit, food consumption, and the physical activity level, TV time and family context. Sample consisted of 149 children (72 = eutrophic and 77 = overweight/obese). Collected data consisted of anthropometry and demographic characteristics, gestational age, birth weight, food consumption, physical activity level, TV time and family context. The gestational age, daily caloric intake and birth weight were the main determinants of the later appearance of overweight and obesity. In addition, the family context linked to socioeconomic factors, such as the number of residents in the household, had a great impact on excess weight. The physical activity level was the least important variable. Modifiable risk factors, such as the inadequate food consumption, and non-modifiable factors such as gestational age were the main determinants for overweight/obesity in children. Our data indicate that, combating excess weight should also be carried out from a social and preventive perspective during critical periods of development, such as pregnancy, lactation and early childhood, to reach a more effective strategy to combat obesity and its complications in childhood and adult life.
RESUMEN
OBJECTIVE: The ketogenic diet (KD), characterized by very limited dietary carbohydrate intake and used as nutritional treatment for GLUT1-deficiency syndromes and pharmacologically refractory epilepsy, may promote weight loss and improve metabolic fitness, potentially alleviating the symptoms of osteoarthritis. Here, we have studied the effects of administration of a ketogenic diet in mice previously rendered obese by feeding a high fat diet (HFD) and submitted to surgical destabilization of the medial meniscus to mimic osteoarthritis. METHODS: 6-weeks old mice were fed an HFD for 10 weeks and then switched to a chow diet (CD), KD or maintained on a HFD for 8 weeks. Glycemia, ß-hydroxybutyrate (BHB), body weight and fat mass were compared among groups. In liver and kidney, protein expression and histone post-translational modifications were assessed by Western blot, and gene expression by quantitative Real-Time PCR. RESULTS: After a 10 weeks HDF feeding, administration for 8 weeks of a KD or CD induced a comparable weight loss and decrease in fat mass, with better glycemic normalization in the KD group. Histone ß-hydroxybutyrylation, but not histone acetylation, was increased in the liver and kidney of mice fed the KD and the rate-limiting ketogenic enzyme HMGCS2 was upregulated - at the gene and protein level - in liver and, to an even greater extent, in kidney. KD-induced HMGCS2 overexpression may be dependent on FGF21, whose gene expression was increased by KD in liver. CONCLUSIONS: Over a period of 8 weeks, KD is more effective than a chow diet to induce metabolic normalization. Besides acting as a fuel molecule, BHB may exert its metabolic effects through modulation of the epigenome - via histone ß-hydroxybutyrylation - and extensive transcriptional modulation in liver and kidney.
Asunto(s)
Dieta Cetogénica , Osteoartritis , Ácido 3-Hidroxibutírico/metabolismo , Animales , Glucemia/metabolismo , Dieta Alta en Grasa/efectos adversos , Carbohidratos de la Dieta/metabolismo , Transportador de Glucosa de Tipo 1/metabolismo , Cuerpos Cetónicos/metabolismo , Riñón/metabolismo , Hígado/metabolismo , Ratones , Osteoartritis/metabolismo , Pérdida de PesoRESUMEN
Numerous post-translational modifications (PTMs) govern the collective metabolism of a cell through altering the structure and functions of proteins. The action of the most prevalent PTMs, encompassing phosphorylation, methylation, acylations, ubiquitination and glycosylation is well documented. A less explored protein PTM, conversion of peptidylarginine to citrulline, is the subject of this review. The process of citrullination is catalysed by peptidylarginine deiminases (PADs), a family of conserved enzymes expressed in a variety of human tissues. Accumulating evidence suggest that citrullination plays a significant role in regulating cellular metabolism and gene expression by affecting a multitude of pathways and modulating the chromatin status. Here, we will discuss the biochemical nature of arginine citrullination, the enzymatic machinery behind it and also provide information on the pathological consequences of citrullination in the development of inflammatory diseases (rheumatoid arthritis, multiple sclerosis, psoriasis, systemic lupus erythematosus, periodontitis and COVID-19), cancer and thromboembolism. Finally, developments on inhibitors against protein citrullination and recent clinical trials providing a promising therapeutic approach to inflammatory disease by targeting citrullination are discussed.
Asunto(s)
Enfermedades Autoinmunes/patología , Citrulinación/fisiología , Inflamación/patología , Procesamiento Proteico-Postraduccional/fisiología , Desiminasas de la Arginina Proteica/metabolismo , COVID-19/patología , Citrulina/biosíntesis , Metabolismo Energético/fisiología , Trampas Extracelulares/inmunología , Regulación de la Expresión Génica/genética , Humanos , Neoplasias/patología , SARS-CoV-2/inmunología , Tromboembolia/patologíaRESUMEN
abstract Children with a deficit of growth because of perinatal malnutrition present specificities in the percentage of body fat (%BF) that could not be detected by previous fat mass-based equations. This study developed and validated predictive equations of the %BF derived from anthropometric variables in children aged 7 to 10 living in Northeast Brazil, using dual-energy x-ray absorptiometry (DXA) as a reference. Body composition data from 58 children were utilized. DXA was used as a reference. A stepwise (forward) multiple regression statistical model was used to develop the new equations. The Bland-Altman analysis (CI: 95%), paired Student's t-test, and the intraclass correlation coefficient (ICC) was used to validate and compare the developed equations. Two new equations were developed for either gender: boys: %BF: 13.642 + (1.527*BMI) + (-0.345*Height) + (0.875*Triceps) + (0.290* Waist Circumference) and girls: %BF: -13.445 + (2.061*Tight). The Bland-Altman analysis showed good agreement, with limits ranging from -1.33 to 1.24% for boys and -3.35 to 4.08% for girls. The paired Student's t-test showed no difference between %BF-DXA and the two new equations (p> 0.05), and the ICC was 0.948 and 0.915, respectively. DXA-based anthropometric equations provide an accurate and noninvasive method to measure changes in the %BF in children.
resumo Crianças com déficit de crescimento por desnutrição perinatal apresentam especificidades na distribuição do percentual de gordura corporal (%GC) que não puderam ser detectadas por equações anteriores baseadas no %GC. Este estudo desenvolveu e validou equações preditivas do %GC derivadas de variáveis antropométricas em crianças de 7 a 10 anos residentes no Nordeste do Brasil, utilizando como referência a absorciometria radiológica de dupla energia (DXA). Foram utilizados dados de composição corporal de 58 crianças. O DXA foi usado como modelo de referência. Um modelo estatístico de regressão múltipla stepwise (forward) foi usado para desenvolver as equações. A análise de Bland-Altman (IC: 95%), teste t de Student pareado e o coeficiente de correlação intraclasse (CCI) foram utilizados para validar e comparar as equações. Duas novas equações foram desenvolvidas para ambos os sexos: meninos: %GC: 13,642 + (1,527*IMC) + (-0,345*Altura) + (0,875*Tríceps) + (0,290* Circunferência da cintura) e meninas: %GC: - 13,445 + (2,061*coxa). A análise de Bland-Altman mostrou boa concordância, com limites variando de -1,33 a 1,24% para meninos e -3,35 a 4,08% para meninas. O teste t de Student pareado não mostrou diferença entre %GC-DXA e as duas novas equações (p>0,05), e o CCI foi de 0,948 e 0,915, respectivamente.
RESUMEN
Maternal protein restriction and physical activity can affect the interaction mother-placenta-fetus. This study quantified the gene expression of brain-derived neurotrophic factor (BDNF), neurothrophin 4, tyrosine kinase receptor B (TrkB/NTRK2), insulin-like growth factor (IGF-1), and insulin-like growth factor receptor (IGF-1r) in the different areas of mother's brain (hypothalamus, hippocampus, and cortex), placenta, and fetus' brain of rats. Female Wistar rats (n = 20) were housed in cages containing a running wheel for 4 weeks before gestation. According to the distance spontaneously traveled daily, rats were classified as inactive or active. During gestation, on continued access to the running wheel, active and inactive groups were randomized to receive normoprotein diet (18% protein) or a low-protein (LP) diet (8% protein). At day 20 of gestation, gene expression of neurotrophic factors was analyzed by quantitative polymerase chain reaction in different brain areas and the placenta. Dams submitted to a LP diet during gestation showed upregulation of IGF-1r and BDNF messenger RNA in the hypothalamus, IGF-1r and NTRK2 in the hippocampus, and BDNF, NTRK2, IGF-1 and IGF-1r in the cortex. In the placenta, there was a downregulation of IGF-1. In the brain of pups from mothers on LP diet, IGF-1r and NTRK2 were downregulated. Voluntary physical activity attenuated the effects of LP diet on IGF-1r in the hypothalamus, IGF-1r and NTRK2 in the hippocampus, IGF-1 in the placenta, and NTRK2 in the fetus' brain. In conclusion, both maternal protein restriction and spontaneous physical activity influence the gene expression of BDNF, NTRK2, IGF-1, and IGF-1r, with spontaneous physical activity being able to normalize in part the defects caused by protein restriction during pregnancy.
Asunto(s)
Encéfalo/metabolismo , Dieta con Restricción de Proteínas , Fenómenos Fisiologicos Nutricionales Maternos , Factores de Crecimiento Nervioso/metabolismo , Placenta/metabolismo , Animales , Femenino , Masculino , Plasticidad Neuronal , Condicionamiento Físico Animal , Placentación , Embarazo , Ratas WistarRESUMEN
AIMS: We investigated the involvement of the renin angiotensin system (RAS) on the cardiorespiratory control in rats from dams fed with a low-protein diet. MAIN METHODS: Male offspring were obtained from dams fed a normoprotein diet (NP, 17% casein) and low-protein diet (LP, 8% casein) during pregnancy and lactation. Direct measurements of arterial pressure (AP), heart rate (HR) and respiratory frequency (RF) were recorded in awake 90-day-old at resting and after losartan potassium through either intracerebroventricular (ICV) microinjections or intravenous (IV) administration. Cardiovascular variability was evaluated by spectral analysis. Peripheral chemoreflex sensitivity was assessed through the potassium cyanide (KCN; 40 µg/0.1 ml/rat, IV). Gene expression was evaluated by qPCR, and MAPK (Mitogen Activated Protein Kinase) expression was evaluated by western blot. KEY FINDINGS: The LP offspring had higher mean AP (MAP) and RF than NP offspring. In the spectral analysis, the LP rats also showed higher low frequency of systolic AP (NP: 2.7 ± 0.3 vs. LP: 5.0 ± 1.0 mmHg). After ICV losartan, MAP and RF in LP rats remained higher than those in NP rats, but without changes in HR. The peripheral chemoreflex was similar between the groups. LP group had lower gene expression of Rac1 (Ras-related C3 botulinum toxin substrate 1) (NP: 1.13 ± 0.06 vs. LP: 0.88 ± 0.08). Peripherally, LP rats had larger delta of MAP after IV losartan (NP: -9.8 ± 2 vs. LP: -23 ± 6 mmHg), without changes in HR and RF. SIGNIFICANCE: In rats, the RAS participates peripherally, but not centrally, in the maintenance of arterial hypertension in male offspring induced by maternal protein restriction.
Asunto(s)
Dieta con Restricción de Proteínas/efectos adversos , Hipertensión/fisiopatología , Fenómenos Fisiologicos Nutricionales Maternos/fisiología , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Sistema Renina-Angiotensina/fisiología , Animales , Presión Arterial/efectos de los fármacos , Presión Arterial/fisiología , Femenino , Frecuencia Cardíaca/efectos de los fármacos , Frecuencia Cardíaca/fisiología , Lactancia/fisiología , Losartán/farmacología , Masculino , Embarazo , Ratas , Ratas Wistar , Frecuencia Respiratoria/efectos de los fármacos , Frecuencia Respiratoria/fisiologíaRESUMEN
BACKGROUND: Perinatal exposure to a poor nutritional environment predisposes the progeny to the development of metabolic disease at the adult age, both in experimental models and humans. Numerous adaptive responses to maternal protein restriction have been reported in metabolic tissues. However, the expression of glucose/fatty acid metabolism-related genes in adipose tissue and liver needs to be described. AIM: To evaluate the metabolic impact of perinatal malnutrition, we determined malnutrition-associated gene expression alterations in liver and adipose tissue. METHODS: In the present study, we evaluated the alterations in gene expression of glycolytic/Krebs cycle genes (Pyruvate dehydrogenase kinase 4 and citrate synthase), adipogenic and lipolytic genes and leptin in the adipose tissue of offspring rats at 30 d and 90 d of age exposed to maternal isocaloric low protein (LP) diet throughout gestation and lactation. We also evaluated, in the livers of the same animals, the same set of genes as well as the gene expression of the transcription factors peroxisome proliferator-activated receptor gamma coactivator 1, forkhead box protein O1 and hepatocyte nuclear factor 4 and of gluconeogenic genes. RESULTS: In the adipose tissue, we observed a transitory (i.e., at 30 d) downregulation of pyruvate dehydrogenase kinase 4, citrate synthase and carnitine palmitoyl transferase 1b gene expression. Such transcriptional changes did not persist in adult LP rats (90 d), but we observed a tendency towards a decreased gene expression of leptin (P = 0.052). The liver featured some gene expression alterations comparable to the adipose tissue, such as pyruvate dehydrogenase kinase 4 downregulation at 30 d and displayed other tissue-specific changes, including citrate synthase and fatty acid synthase upregulation, but pyruvate kinase downregulation at 30 d in the LP group and carnitine palmitoyl transferase 1b downregulation at 90 d. These gene alterations, together with previously described changes in gene expression in skeletal muscle, may account for the metabolic adaptations in response to maternal LP diet and highlight the occurrence of persistent transcriptional defects in key metabolic genes that may contribute to the development of metabolic alterations during the adult life as a consequence of perinatal malnutrition. CONCLUSION: We conclude that perinatal malnutrition relays long-lasting transcriptional alterations in metabolically active organs, i.e., liver and adipose tissue.
RESUMEN
Tumors require a constant supply of nutrients to grow which are provided through tumor blood vessels. To metastasize, tumors need a route to enter circulation, that route is also provided by tumor blood vessels. Thus, angiogenesis is necessary for both tumor progression and metastasis. Angiogenesis is tightly regulated by a balance of angiogenic and antiangiogenic factors. Angiogenic factors of the vascular endothelial growth factor (VEGF) family lead to the activation of endothelial cells, proliferation, and neovascularization. Significant VEGF-A upregulation is commonly observed in cancer cells, also due to hypoxic conditions, and activates endothelial cells (ECs) by paracrine signaling stimulating cell migration and proliferation, resulting in tumor-dependent angiogenesis. Conversely, antiangiogenic factors inhibit angiogenesis by suppressing ECs activation. One of the best-known anti-angiogenic factors is thrombospondin-1 (TSP-1). In pathological angiogenesis, the balance shifts towards the proangiogenic factors and an angiogenic switch that promotes tumor angiogenesis. Here, we review the current literature supporting the notion of the existence of two different endothelial lineages: normal endothelial cells (NECs), representing the physiological form of vascular endothelium, and tumor endothelial cells (TECs), which are strongly promoted by the tumor microenvironment and are biologically different from NECs. The angiogenic switch would be also important for the explanation of the differences between NECs and TECs, as angiogenic factors, cytokines and growth factors secreted into the tumor microenvironment may cause genetic instability. In this review, we focus on the epigenetic differences between the two endothelial lineages, which provide a possible window for pharmacological targeting of TECs.
Asunto(s)
Células Endoteliales/metabolismo , Epigénesis Genética , Epigenoma , Neoplasias/genética , Neoplasias/metabolismo , Animales , Biomarcadores de Tumor , Metabolismo Energético , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Terapia Molecular Dirigida , Metástasis de la Neoplasia , Estadificación de Neoplasias , Neoplasias/patología , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , TranscriptomaRESUMEN
Ketone bodies (KBs), comprising ß-hydroxybutyrate, acetoacetate and acetone, are a set of fuel molecules serving as an alternative energy source to glucose. KBs are mainly produced by the liver from fatty acids during periods of fasting, and prolonged or intense physical activity. In diabetes, mainly type-1, ketoacidosis is the pathological response to glucose malabsorption. Endogenous production of ketone bodies is promoted by consumption of a ketogenic diet (KD), a diet virtually devoid of carbohydrates. Despite its recently widespread use, the systemic impact of KD is only partially understood, and ranges from physiologically beneficial outcomes in particular circumstances to potentially harmful effects. Here, we firstly review ketone body metabolism and molecular signaling, to then link the understanding of ketone bodies' biochemistry to controversies regarding their putative or proven medical benefits. We overview the physiological consequences of ketone bodies' consumption, focusing on (i) KB-induced histone post-translational modifications, particularly ß-hydroxybutyrylation and acetylation, which appears to be the core epigenetic mechanisms of activity of ß-hydroxybutyrate to modulate inflammation; (ii) inflammatory responses to a KD; (iii) proven benefits of the KD in the context of neuronal disease and cancer; and (iv) consequences of the KD's application on cardiovascular health and on physical performance.
Asunto(s)
Diabetes Mellitus Tipo 1 , Dieta Cetogénica , Epigénesis Genética , Neoplasias , Enfermedades del Sistema Nervioso , Ácido 3-Hidroxibutírico/metabolismo , Acetoacetatos/metabolismo , Animales , Diabetes Mellitus Tipo 1/dietoterapia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patología , Epigenómica , Humanos , Cuerpos Cetónicos/genética , Cuerpos Cetónicos/metabolismo , Cetosis/dietoterapia , Cetosis/genética , Cetosis/metabolismo , Cetosis/patología , Metabolómica , Neoplasias/dietoterapia , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Enfermedades del Sistema Nervioso/dietoterapia , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades del Sistema Nervioso/patologíaRESUMEN
Maternal physical activity induces brain functional changes and neuroplasticity, leading to an improvement of cognitive functions, such as learning and memory in the offspring. This study investigated the effects of voluntary maternal physical activity on the gene expression of the neurotrophic factors (NTFs): BDNF, NTF4, NTRK2, IGF-1 and IGF-1r in the different areas of mother's brain, placenta and foetus brain of rats. Female Wistar rats (n = 15) were individually housed in voluntary physical activity cages, containing a running wheel, for 4 weeks (period of adaptation) before gestation. Rats were classified as inactive (I, n = 6); active (A, n = 4) and very active (VA, n = 5) according to daily distance spontaneously travelled. During gestation, the dams continued to have access to the running wheel. At the 20th day of gestation, gene expression of NTFs was analysed in different areas of mother's brain (cerebellum, hypothalamus, hippocampus and cortex), placenta and the offspring's brain. NTFs gene expression was evaluated using quantitative PCR. Very active mothers showed upregulation of IGF-1 mRNA in the cerebellum (36.8%) and NTF4 mRNA expression in the placenta (24.3%). In the cortex, there was a tendency of up-regulation of NTRK2 mRNA (p = 0.06) in the A and VA groups when compared to I group. There were no noticeable changes in the gene expression of NTFs in the offspring's brain. Our findings suggest the existence of a developmental plasticity induced by maternal physical activity in specific areas of the brain and placenta representing the first investment for offspring during development.
Asunto(s)
Encéfalo/metabolismo , Desarrollo Fetal/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Condicionamiento Físico Animal/fisiología , Placenta/metabolismo , Animales , Encéfalo/citología , Encéfalo/embriología , Femenino , Factor I del Crecimiento Similar a la Insulina/genética , Masculino , Modelos Animales , Plasticidad Neuronal/genética , Embarazo , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Receptor trkB/genéticaRESUMEN
Ketone bodies have emerged as central mediators of metabolic health, and multiple beneficial effects of a ketogenic diet, impacting metabolism, neuronal pathologies and, to a certain extent, tumorigenesis, have been reported both in animal models and clinical research. Ketone bodies, endogenously produced by the liver, act pleiotropically as metabolic intermediates, signaling molecules, and epigenetic modifiers. The endothelium and the vascular system are central regulators of the organism's metabolic state and become dysfunctional in cardiovascular disease, atherosclerosis, and diabetic micro- and macrovascular complications. As physiological circulating ketone bodies can attain millimolar concentrations, the endothelium is the first-line cell lineage exposed to them. While in diabetic ketoacidosis high ketone body concentrations are detrimental to the vasculature, recent research revealed that ketone bodies in the low millimolar range may exert beneficial effects on endothelial cell (EC) functioning by modulating the EC inflammatory status, senescence, and metabolism. Here, we review the long-held evidence of detrimental cardiovascular effects of ketoacidosis as well as the more recent evidence for a positive impact of ketone bodies-at lower concentrations-on the ECs metabolism and vascular physiology and the subjacent cellular and molecular mechanisms. We also explore arising controversies in the field and discuss the importance of ketone body concentrations in relation to their effects. At low concentration, endogenously produced ketone bodies upon uptake of a ketogenic diet or supplemented ketone bodies (or their precursors) may prove beneficial to ameliorate endothelial function and, consequently, pathologies in which endothelial damage occurs.
RESUMEN
Glycine is the proteinogenic amino-acid of lowest molecular weight, harboring a hydrogen atom as a side-chain. In addition to being a building-block for proteins, glycine is also required for multiple metabolic pathways, such as glutathione synthesis and regulation of one-carbon metabolism. Although generally viewed as a non-essential amino-acid, because it can be endogenously synthesized to a certain extent, glycine has also been suggested as a conditionally essential amino acid. In metabolic disorders associated with obesity, type 2 diabetes (T2DM), and non-alcoholic fatty liver disease (NAFLDs), lower circulating glycine levels have been consistently observed, and clinical studies suggest the existence of beneficial effects induced by glycine supplementation. The present review aims at synthesizing the recent advances in glycine metabolism, pinpointing its main metabolic pathways, identifying the causes leading to glycine deficiency-especially in obesity and associated metabolic disorders-and evaluating the potential benefits of increasing glycine availability to curb the progression of obesity and obesity-related metabolic disturbances. This study focuses on the importance of diet, gut microbiota, and liver metabolism in determining glycine availability in obesity and associated metabolic disorders.