Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Clin Invest ; 132(17)2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35834335

RESUMEN

Solid organ transplantation is the preferred treatment for end-stage organ failure. Although transplant recipients take life-long immunosuppressive drugs, a substantial percentage of them still reject their allografts. Strikingly, barrier organs colonized with microbiota have significantly shorter half-lives than non-barrier transplanted organs, even in immunosuppressed hosts. We previously demonstrated that skin allografts monocolonized with the common human commensal Staphylococcus epidermidis (S.epi) are rejected faster than germ-free (GF) allografts in mice because the presence of S.epi augments the effector alloimmune response locally in the graft. Here, we tested whether host immune responses against graft-resident commensal microbes, including S.epi, can damage colonized grafts independently from the alloresponse. Naive hosts mounted an anticommensal T cell response to colonized, but not GF, syngeneic skin grafts. Whereas naive antigraft commensal T cells modestly damaged colonized syngeneic skin grafts, hosts with prior anticommensal T cell memory mounted a post-transplant immune response against graft-resident commensals that significantly damaged colonized, syngeneic skin grafts. Importantly, allograft recipients harboring this host-versus-commensal immune response resisted immunosuppression. The dual effects of host-versus-commensal and host-versus-allograft responses may partially explain why colonized organs have poorer outcomes than sterile organs in the clinic.


Asunto(s)
Rechazo de Injerto , Trasplante de Órganos , Animales , Humanos , Inmunidad , Ratones , Trasplante de Piel , Trasplante Homólogo
2.
J Heart Lung Transplant ; 40(8): 745-753, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34030971

RESUMEN

The microbiome is an environmental factor in intricate symbiotic relationship with its hosts' immune system, potentially shaping anticancer immunity, autoimmunity, and transplant responses. The focus of this review is to discuss recent findings tying the microbiota to transplant outcomes and alloimmunity. The microbiota changes dynamically following transplantation, but whether these changes affect transplant outcomes can be difficult to parse out. New data reveal effects of the microbiota locally, as well as systemically, depending on the mucosal/epithelial surface colonized, the specific commensal communities present and the nature of microbial-derived molecules produced. These complex interactions result in the microbiota potentially impacting transplantation at different levels, including modulation of donor and/or recipient cells, alterations in the priming and/or effector phases of the alloimmune response, availability or metabolism of immunosuppressive drugs, transplant fate or post-transplant complications.


Asunto(s)
Inmunidad Adaptativa/inmunología , Rechazo de Injerto/inmunología , Microbiota/fisiología , Trasplante de Órganos , Tolerancia al Trasplante/inmunología , Humanos
3.
Curr Opin Organ Transplant ; 24(6): 679-686, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31577594

RESUMEN

PURPOSE OF REVIEW: The microbiota in mammalian hosts can affect maturation and function of the immune system and has been associated with health and disease. We will review new findings on how this dynamic environmental factor impacts alloimmunity and therapy in transplant hosts. RECENT FINDINGS: The microbiota changes after transplantation and immunosuppressive therapy. New data indicate that different microbial community structures have distinct impact on graft outcome, from promoting, to inhibiting or being neutral to transplant survival. In addition, we will address reciprocal interactions between the microbiota and immunosuppressive drugs, as well as the suitability of the microbiota as a predictive biomarker and its utility as adjunct therapy in transplantation. SUMMARY: Advances in microbiome sequencing and wider availability of gnotobiotic facilities are enabling mechanistic investigations into the commensal communities and pathways that modulate allograft outcome, responsiveness to immunosuppression and side effects of drugs. A better understanding of the functions of the microbiota may help mitigate drug toxicity, predict drug dosage and dampen alloimmunity in transplant patients.


Asunto(s)
Supervivencia de Injerto/inmunología , Microbiota/inmunología , Trasplante de Órganos/efectos adversos , Humanos
4.
JCI Insight ; 52019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31310590

RESUMEN

Solid organ transplantation can treat end-stage organ failure, but the half-life of transplanted organs colonized with commensals is much shorter than that of sterile organs. Whether organ colonization plays a role in this shorter half-life is not known. We have previously shown that an intact whole-body microbiota can accelerate the kinetics of solid organ allograft rejection in untreated colonized mice when compared to germ-free (GF) or to antibiotic-pre-treated colonized mice, by enhancing the capacity of antigen presenting cells (APCs) to activate graft-reactive T cells. However, the contribution of intestinal versus skin microbiota to these effects was unknown. Here, we demonstrate that colonizing the skin of GF mice with a single commensal, Staphylococcus epidermidis (S. epi), while preventing intestinal colonization with oral vancomycin, was sufficient to accelerate skin graft rejection. Notably, unlike the mechanism by which whole-body microbiota accelerates skin graft rejection, cutaneous S. epi did not enhance the priming of alloreactive T cells in the skin-draining lymph nodes (LNs). Rather, cutaneous S. epi augmented the ability of skin APCs to drive the differentiation of alloreactive T cells. This study reveals that the extra-intestinal donor microbiota can affect transplant outcome and may contribute to the shorter half-life of colonized organs.


Asunto(s)
Rechazo de Injerto/inmunología , Rechazo de Injerto/microbiología , Trasplante de Piel , Piel/inmunología , Piel/microbiología , Inmunidad Adaptativa , Animales , Células Presentadoras de Antígenos/inmunología , Proliferación Celular , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microbiota , Trasplante de Órganos , Staphylococcus epidermidis , Linfocitos T/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA