RESUMEN
The COVID-19 pandemic had a profound impact on influenza activity worldwide. However, as the pandemic progressed, influenza activity resumed. Here, we describe the influenza epidemic of high intensity of the 2022-2023 season. The epidemic had an early start and peaked in week 51.2022. The extremely high intensity of the epidemic may have been due to a significant decrease in herd immunity. The results of PCR-testing of 220,067 clinical samples revealed that the influenza A(H1N1)pdm09 virus dominated, causing 56.4% of positive cases, while A(H3N2) influenza subtype accounted for only 0.6%, and influenza B of Victoria lineage-for 34.3%. The influenza vaccine was found to be highly effective, with an estimated effectiveness of 92.7% in preventing admission with laboratory-confirmed influenza severe acute respiratory illness (SARI) cases and 54.7% in preventing influenza-like illness/acute respiratory illness (ILI/ARI) cases due to antigenic matching of circulated viruses with influenza vaccine strains for the season. Full genome next-generation sequencing of 1723 influenza A(H1N1)pdm09 viruses showed that all of them fell within clade 6B.1A.5.a2; nine of them possessed H275Y substitution in the NA gene, a genetic marker of oseltamivir resistance. Influenza A(H3N2) viruses belonged to subclade 3C.2a1b.2a.2 with the genetic group 2b being dominant. All 433 influenza B viruses belonged to subclade V1A.3a.2 encoding HA1 substitutions A127T, P144L, and K203R, which could be further divided into two subgroups. None of the influenza A(H3N2) and B viruses sequenced had markers of resistance to NA inhibitors. Thus, despite the continuing circulation of Omicron descendant lineages, influenza activity has resumed in full force, raising concerns about the intensity of fore coming seasonal epidemics.
Asunto(s)
COVID-19 , Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Humanos , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Subtipo H1N1 del Virus de la Influenza A/genética , Estaciones del Año , Eficacia de las Vacunas , Subtipo H3N2 del Virus de la Influenza A/genética , Pandemias , Federación de Rusia/epidemiologíaRESUMEN
The Omicron variant of SARS-CoV-2 rapidly spread worldwide in late 2021-early 2022, displacing the previously prevalent Delta variant. Before 16 December 2021, community transmission had already been observed in tens of countries globally. However, in Russia, the majority of reported cases at that time had been sporadic and associated with travel. Here, we report an Omicron outbreak at a student dormitory in Saint Petersburg between 16-29 December 2021, which was the earliest known instance of a large-scale community transmission in Russia. Out of the 465 sampled residents of the dormitory, 180 (38.7%) tested PCR-positive. Among the 118 residents for whom the variant had been tested by whole-genome sequencing, 111 (94.1%) were found to carry the Omicron variant. Among these 111 residents, 60 (54.1%) were vaccinated or had reported a previous infection of COVID-19. Phylogenetic analysis confirmed that the outbreak was caused by a single introduction of the BA.1.1 sub-lineage of the Omicron variant. The dormitory-derived clade constituted a significant proportion of BA.1.1 samples in Saint Petersburg and has spread to other regions of Russia and even to other countries. The rapid spread of the Omicron variant in a population with preexisting immunity to previous variants underlines its propensity for immune evasion.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , Filogenia , Brotes de Enfermedades , Federación de Rusia/epidemiologíaRESUMEN
BACKGROUND: Few studies have compared COVID-19 patients from different waves. This study aims to conduct a clinical and morphological analysis of patients who died from COVID-19 during four waves. METHODS: The study involved 276 patients who died from COVID-19 during four waves, including 77 patients in the first wave, 119 patients in the second wave, and 78 patients in the third wave. We performed a histological examination of myocardium samples from autopsies and additionally analyzed the samples by PCR. We conducted immunohistochemistry of the myocardium for 21 samples using antibodies against CD3, CD45, CD8, CD68, CD34, Ang1, VWF, VEGF, HLA-DR, MHC1, C1q, enteroviral VP1, and SARS-CoV-2 spike protein. We also did immunofluorescent staining of three myocardial specimens using VP1/SARS-CoV-2 antibody cocktails. Further, we ran RT-ddPCR analysis for 14 RNA samples extracted from paraffin-embedded myocardium. Electron microscopic studies of the myocardium were also performed for two samples from the fourth wave. RESULTS: Among the 276 cases, active myocarditis was diagnosed in 5% (15/276). Of these cases, 86% of samples expressed VP1, and individual cells contained SARS-CoV-2 spike protein in 22%. Immunofluorescence confirmed the co-localization of VP1 and SARS-CoV-2 spike proteins. ddPCR did not confidently detect SARS-CoV-2 RNA in the myocardium in any myocarditis cases. However, the myocardium sample from wave IV detected a sub-threshold signal of SARS-CoV-2 by qPCR, but myocarditis in this patient was not confirmed. Electron microscopy showed several single particles similar to SARS-CoV-2 virions on the surface of the endothelium of myocardial vessels. A comparison of the cardiovascular complication incidence between three waves revealed that the incidence of hemorrhage (48 vs. 24 vs. 17%), myocardial necrosis (18 vs. 11 vs. 4%), blood clots in the intramural arteries (12 vs. 7 vs. 0%), and myocarditis (19 vs. 1 vs. 6%) decreased over time, and CD8-T-killers appeared. Immunohistochemistry confirmed the presence of endotheliitis in all 21 studied cases. CONCLUSIONS: This study compared myocardial damage in patients who died during three COVID-19 waves and showed a decrease in the incidence of endotheliitis complications (thrombosis, hemorrhage, necrosis) and myocarditis over time. However, the connection between myocarditis and SARS-CoV-2 infection remains unproven.
RESUMEN
Background: External quality assessments (EQAs) for the molecular detection of human respiratory syncytial virus (RSV) are necessary to ensure the standardisation of reliable results. The Phase II, 2019-2020 World Health Organization (WHO) RSV EQA included 28 laboratories in 26 countries. The EQA panel evaluated performance in the molecular detection and subtyping of RSV-A and RSV-B. This manuscript describes the preparation, distribution, and analysis of the 2019-2020 WHO RSV EQA. Methods: Panel isolates underwent whole genome sequencing and in silico primer matching. The final panel included nine contemporary, one historical virus and two negative controls. The EQA panel was manufactured and distributed by the UK National External Quality Assessment Service (UK NEQAS). National laboratories used WHO reference assays developed by the United States Centers for Disease Control and Prevention, an RSV subtyping assay developed by the Victorian Infectious Diseases Reference Laboratory (Australia), or other in-house or commercial assays already in use at their laboratories. Results: An in silico analysis of isolates showed a good match to assay primer/probes. The panel was distributed to 28 laboratories. Isolates were correctly identified in 98% of samples for detection and 99.6% for subtyping. Conclusions: The WHO RSV EQA 2019-2020 showed that laboratories performed at high standards. Updating the composition of RSV molecular EQAs with contemporary strains to ensure representation of circulating strains, and ensuring primer matching with EQA panel viruses, is advantageous in assessing diagnostic competencies of laboratories. Ongoing EQAs are recommended because of continued evolution of mismatches between current circulating strains and existing primer sets.
Asunto(s)
Virus Sincitial Respiratorio Humano , Virus , Estados Unidos , Humanos , Virus Sincitial Respiratorio Humano/genética , Laboratorios , Organización Mundial de la Salud , AustraliaRESUMEN
Influenza circulation was substantially reduced after March 2020 in the European region and globally due to the wide introduction of non-pharmaceutical interventions (NPIs) against COVID-19. The virus, however, has been actively circulating in natural reservoirs. In summer 2021, NPIs were loosened in Russia, and influenza activity resumed shortly thereafter. Here, we summarize the epidemiological and virological data on the influenza epidemic in Russia in 2021-2022 obtained by the two National Influenza Centers. We demonstrate that the commonly used baseline for acute respiratory infection (ARI) is no longer sufficiently sensitive and BL for ILI incidence was more specific for early recognition of the epidemic. We also present the results of PCR detection of influenza, SARS-CoV-2 and other respiratory viruses as well as antigenic and genetic analysis of influenza viruses. Influenza A(H3N2) prevailed this season with influenza B being detected at low levels at the end of the epidemic. The majority of A(H3N2) viruses were antigenically and genetically homogenous and belonged to the clade 3C.2a1b.2a.2 of the vaccine strain A/Darwin/9/2021 for the season 2022-2023. All influenza B viruses belonged to the Victoria lineage and were similar to the influenza B/Austria/1359417/2021 virus. No influenza A(H1N1)pdm09 and influenza B/Yamagata lineage was isolated last season.
Asunto(s)
COVID-19 , Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , COVID-19/epidemiología , COVID-19/prevención & control , Monitoreo Epidemiológico , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/genética , Virus de la Influenza B/genética , Gripe Humana/epidemiología , Gripe Humana/prevención & control , ARN Viral/genética , SARS-CoV-2/genética , Estaciones del AñoRESUMEN
The expansion and standardization of clinical trials, as well as the use of sensitive and specific molecular diagnostics methods, provide new information on the age-specific roles of influenza and other respiratory viruses in development of severe acute respiratory infections (SARI). Here, we present the results of the multicenter hospital-based study aimed to detect age-specific impact of influenza and other respiratory viruses (ORV). The 2018-2019 influenza season in Russia was characterized by co-circulation of influenza A(H1N1)pdm09 and A(H3N2) virus subtypes which were detected among hospitalized patients with SARI in 19.3% and 16.4%, respectively. RSV dominated among ORV (15.1% of total cases and 26.8% in infants aged ≤ 2 years). The most significant SARI agents in intensive care units were RSV and influenza A(H1N1)pdm09 virus, (37.3% and 25.4%, respectively, of PCR-positive cases). Hyperthermia was the most frequently registered symptom for influenza cases. In contrast, hypoxia, decreased blood O2 concentration, and dyspnea were registered more often in RSV, rhinovirus, and metapneumovirus infection in young children. Influenza vaccine effectiveness (IVE) against hospitalization of patients with PCR-confirmed influenza was evaluated using test-negative case-control design. IVE for children and adults was estimated to be 57.0% and 62.0%, respectively. Subtype specific IVE was higher against influenza A(H1N1)pdm09, compared to influenza A(H3N2) (60.3% and 45.8%, respectively). This correlates with delayed antigenic drift of the influenza A(H1N1)pdm09 virus and genetic heterogeneity of the influenza A(H3N2) population. These studies demonstrate the need to improve seasonal influenza prevention and control in all countries as states by the WHO Global Influenza Strategy for 2019-2030 initiative.
Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Infecciones del Sistema Respiratorio , Adulto , Factores de Edad , Deriva y Cambio Antigénico , Niño , Preescolar , Hospitalización , Humanos , Lactante , Subtipo H3N2 del Virus de la Influenza A , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Infecciones del Sistema Respiratorio/diagnóstico , Infecciones del Sistema Respiratorio/epidemiología , Infecciones del Sistema Respiratorio/prevención & control , Estaciones del Año , Eficacia de las VacunasRESUMEN
Human respiratory syncytial virus (RSV) is the most common cause of upper and lower respiratory tract infections in infants and young children. It is actively evolving under environmental and herd immunity influences. This work presents, for the first time, sequence variability analysis of RSV G gene and G protein using St. Petersburg (Russia) isolates. Viruses were isolated in a cell culture from the clinical samples of 61 children hospitalized (January-April 2014) with laboratory-confirmed RSV infection. Real-time RT-PCR data showed that 56 isolates (91.8%) belonged to RSV-A and 5 isolates (8.2%) belonged to RSV-B. The G genes were sequenced for 27 RSV-A isolates and all of them belonged to genotype ON1/GA2. Of these RSV-A, 77.8% belonged to the ON1(1.1) genetic sub-cluster, and 14.8% belonged to the ON1(1.2) sub-cluster. The ON1(1.3) sub-cluster constituted a minor group (3.7%). Many single-amino acid substitutions were identified in the G proteins of St. Petersburg isolates, compared with the Canadian ON1/GA2 reference virus (ON67-1210A). Most of the amino acid replacements were found in immunodominant B- and T-cell antigenic determinants of G protein. These may affect the antigenic characteristics of RSV and influence the host antiviral immune response to currently circulating viruses.
Asunto(s)
Variación Genética , Infecciones por Virus Sincitial Respiratorio/epidemiología , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitial Respiratorio Humano/fisiología , Proteínas del Envoltorio Viral/genética , Genotipo , Historia del Siglo XXI , Humanos , Filogenia , Vigilancia en Salud Pública , Infecciones por Virus Sincitial Respiratorio/historia , Virus Sincitial Respiratorio Humano/clasificación , Virus Sincitial Respiratorio Humano/aislamiento & purificación , Federación de Rusia/epidemiología , Análisis de Secuencia de ADN , Proteínas del Envoltorio Viral/metabolismoRESUMEN
BACKGROUND: External quality assessments (EQAs) for the molecular detection of respiratory syncytial virus (RSV) are necessary to ensure the provision of reliable and accurate results. One of the objectives of the pilot of the World Health Organization (WHO) Global RSV Surveillance, 2016-2017, was to evaluate and standardize RSV molecular tests used by participating countries. This paper describes the first WHO RSV EQA for the molecular detection of RSV. METHODS: The WHO implemented the pilot of Global RSV Surveillance based on the WHO Global Influenza Surveillance and Response System (GISRS) from 2016 to 2018 in 14 countries. To ensure standardization of tests, 13 participating laboratories were required to complete a 12 panel RSV EQA prepared and distributed by the Centers for Disease Control and Prevention (CDC), USA. The 14th laboratory joined the pilot late and participated in a separate EQA. Laboratories evaluated a RSV rRT-PCR assay developed by CDC and compared where applicable, other Laboratory Developed Tests (LDTs) or commercial assays already in use at their laboratories. RESULTS: Laboratories performed well using the CDC RSV rRT-PCR in comparison with LDTs and commercial assays. Using the CDC assay, 11 of 13 laboratories reported correct results. Two laboratories each reported one false-positive finding. Of the laboratories using LDTs or commercial assays, results as assessed by Ct values were 100% correct for 1/5 (20%). With corrective actions, all laboratories achieved satisfactory outputs. CONCLUSIONS: These findings indicate that reliable results can be expected from this pilot. Continued participation in EQAs for the molecular detection of RSV is recommended.
Asunto(s)
Garantía de la Calidad de Atención de Salud/estadística & datos numéricos , Infecciones por Virus Sincitial Respiratorio/diagnóstico , Virus Sincitial Respiratorio Humano/aislamiento & purificación , Humanos , Laboratorios/normas , Técnicas de Diagnóstico Molecular/normas , Proyectos Piloto , ARN Viral/genética , Virus Sincitial Respiratorio Humano/genética , Organización Mundial de la SaludRESUMEN
BACKGROUND: Human respiratory syncytial virus (RSV) causes illnesses among all age groups and presents a burden to healthcare services. To better understand the epidemiology and seasonality of RSV in different geographical areas, the World Health Organization (WHO) coordinated a pilot initiative to access the feasibility of establishing RSV surveillance using the existing Global Influenza Surveillance and Response System (GISRS) platform. OBJECTIVES: To describe and compare RSV and influenza seasonality in countries in the northern andsouthern temperate, and tropics during the period January 2017 to April 2019. METHODS: Fourteen countries in six WHO regions participating in the GISRS were invited for the pilot. Hospitalized patients presenting with severe acute respiratory illness (SARI), SARI without fever and outpatients presenting with acute respiratory illness (ARI) were enrolled from January 2017 to April 2019. The expected minimum sample size was 20 samples per week, year-round, per country. Real-time RT-PCR was used to detect RSV and influenza viruses. Results were uploaded to the WHO FluMart platform. RESULTS: Annual seasonality of RSV was observed in all countries, which overlapped to a large extent with the influenza activity. In countries, in temperate regions RSV peaked in the autumn/winter months. In Egypt, a subtropical country, RSV activity peaked in the cooler season. In the tropical regions, RSV peaked during the rainy seasons. CONCLUSION: Early findings from the WHO RSV surveillance pilot based on the GISRS suggest annual seasonal patterns for of RSV circulation that overlap with influenza. RSV surveillance needs to be continued for several more seasons to establish seasonality patterns to inform prevention and control strategies.
Asunto(s)
Gripe Humana/epidemiología , Infecciones por Virus Sincitial Respiratorio/epidemiología , Vigilancia de Guardia , Salud Global , Humanos , Gripe Humana/diagnóstico , Orthomyxoviridae/genética , Orthomyxoviridae/aislamiento & purificación , Proyectos Piloto , Infecciones por Virus Sincitial Respiratorio/diagnóstico , Virus Sincitial Respiratorio Humano/genética , Virus Sincitial Respiratorio Humano/aislamiento & purificación , Infecciones del Sistema Respiratorio/diagnóstico , Infecciones del Sistema Respiratorio/epidemiología , Infecciones del Sistema Respiratorio/virología , Estaciones del Año , Organización Mundial de la SaludRESUMEN
BACKGROUND: The study was aimed at comparative evaluation of seasonal influenza vaccine RIBSP versus commercial vaccine VAXIGRIP® for immunogenicity and safety in the course of clinical trial phase II on healthy subjects up to 60 years. METHODS: The trial involved 150 subjects in randomized 2:1 groups that received either RIBSP vaccine or comparator vaccine VAXIGRIP®. One dose (0.5 ml) of either vaccine contained 15 µg of hemagglutinin of each influenza virus strain recommended by WHO for the Northern hemisphere in 2016-2017 flu season. The observation period lasted 21 days. The trial was registered at ClinicalTrials.gov identifier NCT03016143. RESULTS: Assessment of immunogenic activity of the vaccine under study showed that in 21 days the portion of participants with 4-fold seroconversions was 80.0% to Ð/H1N1; 65.0% to Ð/H3N2 and 64.0% to B virus. Antibody titer increase factor in the group of subjects that received RIBSP vaccine was 13.4 for Ð/H1N1; 5.2 for Ð/H3N2 and 5.2 for B virus. The subjects that received RIBSP vaccine demonstrated 88% seroprotection rate against Ð/H1N1; 75% against Ð/H3N2 and 61% against B virus. In the course of evaluating the vaccine safety, no serious adverse events were recorded. All changes of laboratory data were slight and single in most cases. All recorded local reactions have been light in character and these have been predicted reactions observed at vaccination against influenza. CONCLUSION: Comparison vaccines RIBSP and VAXIGRIP®, showed similar immunogenic activity. The RIBSP vaccine is safe and immunogenic for the elderly and conforms to international criteria in CPMP/BWP/214/96.
Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Anciano , Anticuerpos Antivirales , Pruebas de Inhibición de Hemaglutinación , Humanos , Inmunogenicidad Vacunal , Subtipo H3N2 del Virus de la Influenza A , Virus de la Influenza B , Vacunas contra la Influenza/efectos adversos , Gripe Humana/prevención & control , Kazajstán , Vacunas de Productos Inactivados/efectos adversosRESUMEN
BACKGROUND AND AIM: The majority of seasonal influenza vaccines are trivalent, containing two A virus strains (H1N1 and H3N2) and one B virus strain. The co-circulation of two distinct lineages of B viruses can lead to mismatch between the influenza B virus strain recommended for the trivalent seasonal vaccine and the circulating B virus. This has led some manufacturers to produce quadrivalent influenza vaccines containing one strain from each B lineage in addition to H1N1 and H3N2 strains. However, it is also important to know whether vaccines containing a single influenza B strain can provide cross-protectivity against viruses of the antigenically distinct lineage. The aim of this study was to assess in naïve ferrets the potential cross-protective activity of trivalent live attenuated influenza vaccine (T-LAIV) against challenge with a heterologous wild-type influenza B virus belonging to the genetically different lineage and to compare this activity with effectiveness of quadrivalent LAIV (Q-LAIV) in the ferret model. METHODS AND RESULTS: Ferrets were vaccinated with either one dose of trivalent LAIV containing B/Victoria or B/Yamagata lineage virus, or quadrivalent LAIV (containing both B lineages), or placebo. They were then challenged with B/Victoria or B/Yamagata lineage wild-type virus 28 days after vaccination. The ferrets were monitored for clinical signs and morbidity. Nasal swabs and lung tissue samples were analyzed for the presence of challenge virus. Antibody response to vaccination was assessed by routine hemagglutination inhibition assay. All LAIVs tested were found to be safe and effective against wild-type influenza B viruses based on clinical signs, and virological and histological data. The absence of interference between vaccine strains in trivalent and quadrivalent vaccine formulations was confirmed. Trivalent LAIVs were shown to have the potential to be cross-protective against infection with genetically different influenza B/Victoria and B/Yamagata lineages. CONCLUSIONS: In this ferret model, quadrivalent vaccine provided higher protection to challenge against both B/Victoria and B/Yamagata lineage viruses. However, T-LAIV provided some cross-protection in the case of a mismatch between circulating and vaccine type B strains. Notably, B/Victoria-based T-LAIV was more protective compared to B/Yamagata-based T-LAIV.
Asunto(s)
Protección Cruzada/inmunología , Inmunogenicidad Vacunal , Vacunas contra la Influenza/inmunología , Gripe Humana/prevención & control , Vacunación/métodos , Administración Intranasal , Animales , Anticuerpos Antivirales/sangre , Protección Cruzada/genética , Modelos Animales de Enfermedad , Femenino , Hurones , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/patogenicidad , Virus de la Influenza B/genética , Virus de la Influenza B/inmunología , Virus de la Influenza B/patogenicidad , Vacunas contra la Influenza/administración & dosificación , Gripe Humana/sangre , Gripe Humana/inmunología , Gripe Humana/virología , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/inmunologíaRESUMEN
Influenza H7N9 virus is a potentially pandemic subtype to which most people are immunologically naïve. To be better prepared for the potential occurrence of an H7N9 pandemic, in 2017 the World Health Organization recommended developing candidate vaccine viruses from two new H7N9 viruses, A/Guangdong/17SF003/2016 (A/GD) and A/Hong Kong/125/2017 (A/HK). This report describes the development of live attenuated influenza vaccine (LAIV) candidates against A/GD and A/HK viruses and study of their safety and immunogenicity in the ferret model in order to choose the most promising one for a phase I clinical trial. The A/HK-based vaccine candidate (A/17/HK) was developed by classical reassortment in eggs. The A/GD-based vaccine candidate (A/17/GD) was generated by reverse genetics. Ferrets were vaccinated with two doses of LAIV or phosphate-buffered saline. Both H7N9 LAIVs tested were safe for ferrets, as shown by absence of clinical signs, and by virological and histological data; they were immunogenic after a single vaccination. These results provide a compelling argument for further testing of these vaccines in volunteers. Since the A/HK virus represents the cluster that has caused the majority of human cases, and because the A/HK-based LAIV candidate was developed by classical reassortment, this is the preferred candidate for a phase I clinical trial.
RESUMEN
BACKGROUND: Currently, two genetic lineages of influenza B virus, B/Victoria and B/Yamagata, are cocirculating in humans in various countries. This situation has raised a question regarding the possibility of cross-protection between B components of live attenuated influenza vaccine (LAIV) belonging to different lineages. This study aimed to assess in naïve ferrets the potential protective activity of monovalent B-LAIVs against challenge with homologous and heterologous wild-type (WT) influenza B viruses. METHODS: Groups of seronegative female ferrets 5-6 months of age were given one dose of monovalent LAIV based on B/Victoria or B/Yamagata lineage virus. Ferrets were challenged 21 days later with B/Victoria or B/Yamagata WT virus. Ferrets were monitored closely for clinical signs and morbidity outcomes including febrile response, body weight loss, nasal symptoms, and level of activity one week prior to vaccination and for three days following vaccination/challenge. Nasal washes were collected three days after vaccination/challenge. Samples of lung tissue were taken three days after challenge. All samples were analyzed for the presence of challenge virus by culturing in embryonated chicken eggs and real-time polymerase chain reaction. Antibody response to vaccination was assessed by routine hemagglutination inhibition assay and microneutralization test. RESULTS: Vaccination led to intensive production of specific neutralizing and antihemagglutinating antibodies to vaccine virus, protected ferrets from homologous challenge infection, and significantly reduced clinical signs and replication of homologous challenge virus. In contrast, cross-lineage serum antibodies were not detected. However, ferrets vaccinated with monovalent B-LAIV had a significantly lower level of heterologous challenge virus in the respiratory tract than those given challenge virus only. CONCLUSIONS: Monovalent B-LAIV has the potential to be cross-protective against infection with genetically different influenza lineages. Further studies are required to confirm this effect.
Asunto(s)
Virus de la Influenza B/genética , Vacunas contra la Influenza/inmunología , Vacunas Atenuadas/inmunología , Animales , Anticuerpos Antivirales , Femenino , Hurones , Humanos , Virus de la Influenza B/efectos de los fármacos , Gripe Humana , Infecciones por OrthomyxoviridaeRESUMEN
Oncolytic viruses are currently established as a novel type of immunotherapy. The challenge is to safely target oncolytic viruses to tumors. Previously, we have generated influenza A viruses (IAVs) containing deletions in the viral interferon antagonist. Those deletions have attenuated the virus in normal tissue but allowed replication in tumor cells. IAV entry is mediated by hemagglutinin (HA), which needs to be activated by a serine protease, for example, through trypsin. To further target the IAV to tumors, we have changed the trypsin cleavage site to an elastase cleavage site. We chose this cleavage site because elastase is expressed in the tumor microenvironment. Moreover, the exchange of the cleavage site previously has been shown to attenuate viral growth in lungs. Newly generated elastase-activated influenza viruses (AE viruses) grew to similar titers in tumor cells as the trypsin-activated counterparts (AT viruses). Intratumoral injection of AE viruses into syngeneic B16f1 melanoma-derived tumors in mice reduced tumor growth similar to AT viruses and had a better therapeutic effect in heterologous human PANC-1-derived tumors. Therefore, the introduction of the attenuation marker "elastase cleavage site" in viral HA allows for safe, effective oncolytic virus therapy.
RESUMEN
BACKGROUND: Continuous surveillance for genetic changes in circulating influenza viruses is needed to guide influenza prevention and control. OBJECTIVES: To compare intra-seasonal influenza genetic diversity of hemagglutinin in influenza A strains isolated from influenza hospital admissions collected at two distinct sites during the same season. STUDY DESIGN: Comparative phylogenetic analysis of full-length hemagglutinin genes from 77 isolated influenza A viruses from the St. Petersburg, Russian Federation and Valencia, Spain sites of the Global Influenza Hospital Surveillance Network (GIHSN) during the 2013/14 season. RESULTS: We found significant variability in A(H3N2) and A(H1N1)pdm09 viruses between the two sites, with nucleotide variation at antigenic positions much lower for A(H1N1)pdm09 than for A(H3N2) viruses. For A(H1N1)pdm09, antigenic sites differed by three to four amino acids from the vaccine strain, two of them common to all tested isolates. For A(H3N2) viruses, antigenic sites differed by six to nine amino acids from the vaccine strain, four of them common to all tested isolates. A fifth amino acid substitution in the antigenic sites of A(H3N2) defined a new clade, 3C.2. For both influenza A subtypes, pairwise amino acid distances between circulating viruses and vaccine strains were significantly higher at antigenic than at non-antigenic sites. Whereas A(H1N1)pdm09 viruses clustered with clade 6B and 94% of A(H3N2) with clade 3C.3, at both study sites A(H3N2) clade 3C.2 viruses emerged towards the end of the season, showing greater pairwise amino acid distances from the vaccine strain compared to the predominant clade 3C.3. CONCLUSIONS: Influenza A antigenic variants differed between St. Petersburg and Valencia, and A(H3N2) clade 3C.2 viruses were characterized by more amino acid differences from the vaccine strain, especially at the antigenic sites.
Asunto(s)
Monitoreo Epidemiológico , Salud Global , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/genética , Gripe Humana/epidemiología , Gripe Humana/virología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Femenino , Variación Genética , Genoma Viral , Humanos , Lactante , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H3N2 del Virus de la Influenza A/aislamiento & purificación , Masculino , Persona de Mediana Edad , Filogenia , ARN Viral/genética , Federación de Rusia/epidemiología , Estaciones del Año , Análisis de Secuencia de ADN , España/epidemiología , Adulto JovenRESUMEN
BACKGROUND: The Global Influenza Hospital Surveillance Network was established in 2012 to obtain valid epidemiologic data on hospital admissions with influenza-like illness. Here we describe the epidemiology of admissions with influenza within the Northern Hemisphere sites during the 2013/2014 influenza season, identify risk factors for severe outcomes and complications, and assess the impact of different influenza viruses on clinically relevant outcomes in at-risk populations. METHODS: Eligible consecutive admissions were screened for inclusion at 19 hospitals in Russia, Turkey, China, and Spain using a prospective, active surveillance approach. Patients that fulfilled a common case definition were enrolled and epidemiological data were collected. Risk factors for hospitalization with laboratory-confirmed influenza were identified by multivariable logistic regression. FINDINGS: 5303 of 9507 consecutive admissions were included in the analysis. Of these, 1086 were influenza positive (534 A(H3N2), 362 A(H1N1), 130 B/Yamagata lineage, 3 B/Victoria lineage, 40 untyped A, and 18 untyped B). The risk of hospitalization with influenza (adjusted odds ratio [95% confidence interval]) was elevated for patients with cardiovascular disease (1.63 [1.33-2.02]), asthma (2.25 [1.67-3.03]), immunosuppression (2.25 [1.23-4.11]), renal disease (2.11 [1.48-3.01]), liver disease (1.94 [1.18-3.19], autoimmune disease (2.97 [1.58-5.59]), and pregnancy (3.84 [2.48-5.94]). Patients without comorbidities accounted for 60% of admissions with influenza. The need for intensive care or in-hospital death was not significantly different between patients with or without influenza. Influenza vaccination was associated with a lower risk of confirmed influenza (adjusted odds ratio = 0.61 [0.48-0.77]). CONCLUSIONS: Influenza infection was detected among hospital admissions with and without known risk factors. Pregnancy and underlying comorbidity increased the risk of detecting influenza virus in patients hospitalized with influenza-like illness. Our results support influenza vaccination as a measure for reducing the risk of influenza-associated hospital admission.
Asunto(s)
Gripe Humana/epidemiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , China , Análisis por Conglomerados , Comorbilidad , Monitoreo Epidemiológico , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Análisis Multivariante , Oportunidad Relativa , Orthomyxoviridae , Evaluación de Resultado en la Atención de Salud , Admisión del Paciente , Embarazo , Complicaciones Infecciosas del Embarazo , Estudios Prospectivos , Riesgo , Factores de Riesgo , Federación de Rusia , España , Turquía , Adulto JovenRESUMEN
A dramatic increase of influenza activity in Russia since week 3 of 2016 significantly differs from previous seasons in terms of the incidence of influenza and acute respiratory infection (ARI) and in number of lethal cases. We performed antigenic analysis of 108 and whole-genome sequencing of 77 influenza A(H1N1)pdm09 viruses from Moscow and Saint Petersburg. Most of the viruses were antigenically related to the vaccine strain. Whole-genome analysis revealed a composition of specific mutations in the internal genes (D2E and M83I in NEP, E125D in NS1, M105T in NP, Q208K in M1, and N204S in PA-X) that probably emerged before the beginning of 2015/2016 epidemic season.
Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/genética , Gripe Humana/virología , Proteínas Virales/genética , Genoma Viral , Humanos , Subtipo H1N1 del Virus de la Influenza A/clasificación , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Gripe Humana/epidemiología , Moscú/epidemiología , Mutación , Federación de Rusia/epidemiología , Estaciones del Año , Proteínas Virales/metabolismoRESUMEN
BACKGROUND: Ensuring genetic stability is a prerequisite for live attenuated influenza vaccine (LAIV). This study describes the results of virus shedding and clinical isolates' testing of Phase I clinical trials of Russian LAIVs against potentially pandemic influenza viruses in healthy adults. METHODS: Three live attenuated vaccines against potentially pandemic influenza viruses, H2N2 LAIV, H5N2 LAIV and H7N3 LAIV, generated by classical reassortment in eggs, were studied. For each vaccine tested, subjects were randomly distributed into two groups to receive two doses of either LAIV or placebo at a 3:1 vaccine/placebo ratio. Nasal swabs were examined for vaccine virus shedding by culturing in eggs and by PCR. Vaccine isolates were tested for temperature sensitivity and cold-adaptation (ts/ca phenotypes) and for nucleotide sequence. RESULTS: The majority of nasal wash positive specimens were detected on the first day following vaccination. PCR method demonstrated higher sensitivity than routine virus isolation in eggs. None of the placebo recipients had detectable vaccine virus replication. All viruses isolated from the immunized subjects retained the ts/ca phenotypic characteristics of the master donor virus (MDV) and were shown to preserve all attenuating mutations described for the MDV. These data suggest high level of vaccine virus genetic stability after replication in humans. During manufacture process, no additional mutations occurred in the genome of H2N2 LAIV. In contrast, one amino acid change in the HA of H7N3 LAIV and two additional mutations in the HA of H5N2 LAIV manufactured vaccine lot were detected, however, they did not affect their ts/ca phenotypes. CONCLUSIONS: Our clinical trials revealed phenotypic and genetic stability of the LAIV viruses recovered from the immunized volunteers. In addition, no vaccine virus was detected in the placebo groups indicating the lack of person-to-person transmission. LAIV TRIAL REGISTRATION at ClinicalTrials.gov: H7N3-NCT01511419; H5N2-NCT01719783; H2N2-NCT01982331.
Asunto(s)
Genoma Viral , Inestabilidad Genómica , Vacunas contra la Influenza/administración & dosificación , Gripe Humana/prevención & control , Esparcimiento de Virus , Adolescente , Adulto , Animales , Pollos , Análisis Mutacional de ADN , Método Doble Ciego , Femenino , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Subtipo H2N2 del Virus de la Influenza A/genética , Subtipo H2N2 del Virus de la Influenza A/aislamiento & purificación , Subtipo H5N2 del Virus de la Influenza A/genética , Subtipo H5N2 del Virus de la Influenza A/aislamiento & purificación , Subtipo H7N3 del Virus de la Influenza A/genética , Subtipo H7N3 del Virus de la Influenza A/aislamiento & purificación , Vacunas contra la Influenza/inmunología , Masculino , Persona de Mediana Edad , Óvulo , Virus Reordenados/genética , Virus Reordenados/aislamiento & purificación , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/inmunología , Replicación Viral , Adulto JovenRESUMEN
BACKGROUND: This study describes a double-blinded randomized placebo-controlled phase I clinical trial of A/H5N2 live attenuated influenza vaccine in healthy volunteers. METHODS: Two doses of vaccine or placebo were administered intranasally to 30 and 10 subjects, respectively. Nasal swabs were examined for vaccine shedding and local antibody responses; serum samples were tested for binding, hemagglutinating and neutralizing antibodies and peripheral blood mononuclear cells were tested for cell-mediated immune responses. RESULTS: The vaccine was well tolerated and not associated with increased rates of adverse events or the occurrence of serious adverse events. Influenza virus was detected in nasal swabs on the first day in the majority of volunteers (93%), while 17% of volunteers tested positive on the second, none on the third day or later following the first vaccination; lower frequency of shedding was observed after the second vaccination. The vaccine was immunogenic as assessed four weeks after the second dose, with 37.9% and 48.3% of subjects seroconverting by hemagglutination inhibition and neutralization assays, respectively. An immune response was observed in 96.6% subjects that received A/H5N2 LAIV in at least one of the assays conducted. None of the placebo recipients exhibited a response in any of the assays. CONCLUSION: The A/H5N2 vaccine was safe, well tolerated, and immunogenic in healthy adults. TRIAL REGISTRATION: ClinicalTrials.gov NCT01719783.
Asunto(s)
Subtipo H5N2 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/inmunología , Gripe Humana/prevención & control , Administración Intranasal , Adolescente , Adulto , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Método Doble Ciego , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/epidemiología , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/patología , Femenino , Voluntarios Sanos , Humanos , Vacunas contra la Influenza/efectos adversos , Gripe Humana/virología , Leucocitos Mononucleares/inmunología , Masculino , Persona de Mediana Edad , Placebos/administración & dosificación , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/efectos adversos , Vacunas Atenuadas/inmunología , Adulto JovenRESUMEN
BACKGROUND: Influenza is a global public health problem. However, severe influenza only recently has been addressed in routine surveillance. OBJECTIVES: The Global Influenza Hospital Surveillance Network (GIHSN) was established to study the epidemiology of severe influenza in consecutive seasons in different countries. Our objective is to describe the GIHSN approach and methods. METHODS: The GIHSN uses prospective active surveillance to identify consecutive influenza admissions in permanent residents of well-defined geographic areas in sites around the world. A core common protocol is followed. After consent, data are collected on patient characteristics and clinical outcomes, respiratory swabs are obtained, and the presence of influenza virus and subtype or lineage is ascertained by polymerase chain reaction. Data are collated and analyzed at the GIHSN coordination center. RESULTS: The GIHSN has run its activities for two consecutive influenza seasons, 2012-2013 and 2013-2014, and hospitals in Brazil, China, France, Russian Federation, Turkey, and Spain have been involved in one or both seasons. Consistency on the application of the protocol and heterogeneity for the first season have been addressed in two previous publications. During both seasons, 19 677 eligible admissions were recorded; 11 843 (60%) were included and tested, and 2713 (23%) were positive for influenza: 991 (37%) A(H1N1); 807 (30%) A(H3N2); 583 (21%) B/Yamagata; 56 (2%) B/Victoria and 151 (6%) influenza A; and 125 (5%) influenza B were not characterized. CONCLUSIONS: The GIHSN is a platform that provides information on severe influenza worldwide, applying a common core protocol and a consistent case definition.