Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(5): 056303, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38364168

RESUMEN

Employing flux-grown single crystal WSe_{2}, we report charge-carrier scattering behaviors measured in h-BN encapsulated monolayer field effect transistors. We observe a nonmonotonic change of transport mobility as a function of hole density in the degenerately doped sample, which can be explained by energy dependent scattering amplitude of strong defects calculated using the T-matrix approximation. Utilizing long mean-free path (>500 nm), we also demonstrate the high quality of our electronic devices by showing quantized conductance steps from an electrostatically defined quantum point contact, showing the potential for creating ultrahigh quality quantum optoelectronic devices based on atomically thin semiconductors.

2.
Nat Mater ; 22(12): 1485-1491, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37857888

RESUMEN

Van der Waals (vdW) materials have opened up many avenues for discovery through layer assembly, as epitomized by interlayer dipolar excitons that exhibit electrically tunable luminescence, lasing and exciton condensation. Extending interlayer excitons to more vdW layers, however, raises fundamental questions concerning coherence within excitons and coupling between moiré superlattices at multiple interfaces. Here, by assembling angle-aligned WSe2/WS2/WSe2 heterotrilayers, we demonstrate the emergence of quadrupolar excitons. We confirm the exciton's quadrupolar nature by the decrease in its energy of 12 meV from coherent hole tunnelling between the two outer layers, its tunable static dipole moment under an external electric field and the reduced exciton-exciton interactions. At high exciton density, we also see signatures of a phase of oppositely aligned dipolar excitons, consistent with a staggered dipolar phase predicted to be driven by attractive dipolar interactions. Our demonstration paves the way for discovering emergent exciton orderings for three vdW layers and beyond.

3.
Science ; 366(6467): 870-875, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31727834

RESUMEN

A van der Waals heterostructure built from atomically thin semiconducting transition metal dichalcogenides (TMDs) enables the formation of excitons from electrons and holes in distinct layers, producing interlayer excitons with large binding energy and a long lifetime. By employing heterostructures of monolayer TMDs, we realize optical and electrical generation of long-lived neutral and charged interlayer excitons. We demonstrate that neutral interlayer excitons can propagate across the entire sample and that their propagation can be controlled by excitation power and gate electrodes. We also use devices with ohmic contacts to facilitate the drift motion of charged interlayer excitons. The electrical generation and control of excitons provide a route for achieving quantum manipulation of bosonic composite particles with complete electrical tunability.

4.
Nano Lett ; 17(8): 4781-4786, 2017 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-28691487

RESUMEN

Monolayer MoS2, among many other transition metal dichalcogenides, holds great promise for future applications in nanoelectronics and optoelectronics due to its ultrathin nature, flexibility, sizable band gap, and unique spin-valley coupled physics. However, careful study of these properties at low temperature has been hindered by an inability to achieve low-temperature Ohmic contacts to monolayer MoS2, particularly at low carrier densities. In this work, we report a new contact scheme that utilizes cobalt (Co) with a monolayer of hexagonal boron nitride (h-BN) that has the following two functions: modifies the work function of Co and acts as a tunneling barrier. We measure a flat-band Schottky barrier of 16 meV, which makes thin tunnel barriers upon doping the channels, and thus achieve low-T contact resistance of 3 kΩ.µm at a carrier density of 5.3 × 1012/cm2. This further allows us to observe Shubnikov-de Haas oscillations in monolayer MoS2 at much lower carrier densities compared to previous work.

5.
Nat Nanotechnol ; 12(9): 856-860, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28650440

RESUMEN

Transition metal dichalcogenide (TMD) monolayers with a direct bandgap feature tightly bound excitons, strong spin-orbit coupling and spin-valley degrees of freedom. Depending on the spin configuration of the electron-hole pairs, intra-valley excitons of TMD monolayers can be either optically bright or dark. Dark excitons involve nominally spin-forbidden optical transitions with a zero in-plane transition dipole moment, making their detection with conventional far-field optical techniques challenging. Here, we introduce a method for probing the optical properties of two-dimensional materials via near-field coupling to surface plasmon polaritons (SPPs). This coupling selectively enhances optical transitions with dipole moments normal to the two-dimensional plane, enabling direct detection of dark excitons in TMD monolayers. When a WSe2 monolayer is placed on top of a single-crystal silver film, its emission into near-field-coupled SPPs displays new spectral features whose energies and dipole orientations are consistent with dark neutral and charged excitons. The SPP-based near-field spectroscopy significantly improves experimental capabilities for probing and manipulating exciton dynamics of atomically thin materials, thus opening up new avenues for realizing active metasurfaces and robust optoelectronic systems, with potential applications in information processing and communication.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA