Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Braz. J. Pharm. Sci. (Online) ; 59: e21738, 2023. graf
Artículo en Inglés | LILACS | ID: biblio-1439498

RESUMEN

Abstract Schizophrenia is an illness that affects 26 million people worldwide. However, conventional antipsychotics present side effects and toxicity, highlighting the need for new antipsychotics. We aimed to evaluate the cytotoxicity of haloperidol (HAL), clozapine (CLO), and a new molecule with antipsychotic potential, PT-31, in NIH-3T3 cells. The neutral red uptake assay and the MTT assay were performed to evaluate cell viability and mitochondrial activity, morphological changes were assessed, and intracellular reactive oxygen species (ROS) detection was performed. HAL and CLO (0.1 µM) showed a decrease in cell viability in the neutral red uptake assay and in the MTT assay. In addition, cell detachment, content decrease, rounding and cell death were also observed at 0.1 µM for both antipsychotics. An increase in ROS was observed for HAL (0.001, 0.01 and 1 µM) and CLO (0.01 and 1 µM). PT-31 did not alter cell viability in any of the assays, although it increased ROS at 0.01 and 1 µM. HAL and CLO present cytotoxicity at 0.1 µM, possibly through apoptosis and necrosis. In contrast, PT-31 does not present cytotoxicity to NIH-3T3 cells. Further studies must be performed for a better understanding of these mechanisms and the potential risk of conventional antipsychotics


Asunto(s)
Esquizofrenia/patología , Antipsicóticos/efectos adversos , Clozapina/análisis , Haloperidol/análisis , Células 3T3 NIH/clasificación , Rojo Neutro/farmacología
2.
Toxicol Mech Methods ; 32(9): 705-715, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35410575

RESUMEN

Schizophrenia is a psychiatric disorder that affects 1% of the world population and is treated with antipsychotics, which may induce important biochemical and hematological alterations. Since it is necessary to verify the safety of new molecules with antipsychotic potential, the present study aimed to evaluate the oral toxicity of PT-31, a putative α2-adrenoreceptor agonist, after acute (2000 mg/kg) and repeated doses (28 days) gavage treatment, in three different doses: minimum effective dose in animal models (10 mg/kg), twice the dose (20 mg/kg), and four times the dose (40 mg/kg), as recommended by the OECD guidelines. Balb/C female adult mice were used, and biochemical, hematological, and histopathological analyses were performed. PT-31 10 and 20 mg/kg did not cause biochemical alterations related to hepatic and renal toxicity, and neither altered glycemic and lipid profiles. The preclinical dose of PT-31 also did not promote mice histopathological changes in the liver, kidney, and brain. In the hematimetric parameters, PT-31 only increased HGB at 20 mg/kg, and MCH and MCHC at 40 mg/kg. However, all the tested doses of PT-31 showed platelet increase, which must be better investigated. Therefore, further studies are needed to investigate the safety of PT-31 as a potential antipsychotic drug.


Asunto(s)
Antipsicóticos , Animales , Antipsicóticos/toxicidad , Femenino , Humanos , Riñón , Lípidos , Hígado , Ratones , Pruebas de Toxicidad Aguda
3.
Med Chem ; 18(9): 980-989, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35249500

RESUMEN

BACKGROUND: Oxazolidinones display several biological effects, including anticancer activity. The purpose of this present work was to investigate a series of novel oxazolidinone derivatives with potential antineoplastic activity. Their mechanisms of death induction and effects in the cell cycle were also evaluated. A molecular docking study was accomplished through proteins of the Cyclin-Dependent Kinases family (CDK). The new compound LPSF/NBM-2 was appeared to promote cell cycle arrest at the G2/M phase and increase the percentage of apoptotic cells. METHODS: Oxazolidinone derivatives were obtained through Knoevenagel condensation. The cytotoxic assay was evaluated through the MTT method. Moreover, flow cytometry was performed in order to investigate the effects of the new compounds on the cell cycle, induction of cell death, and apoptosis. A blind docking was performed through the SwissDock online server and the analysis of the results was performed using the UCSF Chimera and Biovia discovery studio software. RESULTS: LPSF/NBM-1 and LPSF/NBM-2 displayed the most cytotoxic activity against HL-60 (IC50 = 54.83 µM) and MOLT-4 (IC50 = 51.61 µM) cell lines. LPSF/NBM-2 showed an increased percentage of cell population at the G2/M phase. Molecular-docking results of LPSF/NBM-1 and LPSF/NBM-2 suggested a binding affinity with the evaluated CDK proteins. CONCLUSION: LPSF/NBM-1 and LPSF/NBM-2 displayed cytotoxic profiles against Hl-60 and MOLT-4. LPSF/NBM-2 increased cell population percentage at the G2/M phase and promoted cell death compared to non-treated cells in the MOLT-4 cell line. Based on these findings, oxazolidinone derivatives could be highlighted as possible cytostatic agents against lymphoma cells. Molecular docking results suggested the action of LPSF/NBM-1 and LPSF/NBM-2 compounds on enzymes of cyclin-dependent kinases family, however, more studies are needed to establish this correlation.


Asunto(s)
Antineoplásicos , Oxindoles , Antineoplásicos/química , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad
4.
Behav Pharmacol ; 30(7): 574-587, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31206371

RESUMEN

Evidence of changes in central noradrenergic activity has been reported in schizophrenic patients and studies indicate that activation of the α2-adrenoceptor improves memory and neuroprotection. In this study, a new imidazolidine derivative 3-(2-chloro-6-fluorobenzyl)-imidazolidine-2,4-dione, PT-31, a putative α2A-adrenoceptor agonist, was evaluated in mouse models predictive of efficacy in the treatment of positive and cognitive symptoms of schizophrenia, as well as its ability to promote cerebellar granule cell survival in vitro, in the presence or absence of glutamate (100 µmol/l). PT-31 prevented apomorphine-induced climbing and the ketamine-induced hyperlocomotion, without inducing catalepsy or motor impairment. PT-31 protected against the impairment of prepulse inhibition induced by apomorphine, (±)-DOI, and ketamine. The molecule did not affect mouse short nor long-term memory per se, but it protected against ketamine-induced memory impairment when administered at different stages of the memory process (acquisition, consolidation, and retrieval) in the novel object recognition task. When added to cultured cerebellar granule neurons, PT-31 was not toxic per se and protected neurons from glutamate-induced apoptosis. In conclusion, PT-31 displayed a preclinical pharmacology predictive of neuroprotective effects and efficacy in relieving schizophrenia symptoms, without inducing motor side effects, suggesting that it could represent a molecular scaffold for antipsychotic drug development.


Asunto(s)
Esquizofrenia/tratamiento farmacológico , Animales , Antipsicóticos/farmacología , Apomorfina/farmacología , Catalepsia/inducido químicamente , Cognición/efectos de los fármacos , Modelos Animales de Enfermedad , Agonistas de Dopamina/farmacología , Imidazolidinas/farmacología , Masculino , Memoria/efectos de los fármacos , Trastornos de la Memoria/tratamiento farmacológico , Memoria a Largo Plazo/efectos de los fármacos , Ratones , Ratones Endogámicos , Ratas , Ratas Wistar , Receptores Adrenérgicos/metabolismo , Psicología del Esquizofrénico
5.
Anticancer Drugs ; 29(2): 157-166, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29256900

RESUMEN

Substitutions in thiophene structure give rise to new derivatives with different biological and pharmacological activities. The present study investigated the cytotoxicity activity of some thiophene derivatives in breast cancer cells maintained in two-dimensional (2D) or in three-dimensional (3D) culture and evaluated the anticancer mechanism of these compounds. Cytotoxicity assays were performed against untransformed cells and against breast cancer cell MCF-7. Apoptosis analysis and in-vitro migration assay were also performed to evaluate the mechanism of induction of cell death. All thiophene derivatives reduced the cell viability in breast cancer cells, showing cytotoxic activity (IC50<30 µmol/l), and SB-200 compound showed the best selectivity index in MCF-7 cells compared with doxorubicin in 2D culture. All thiophene derivatives significantly induced G0/G1 phase cell cycle arrest. However, only SB-83 treatment was effective against motility of MCF-7 cells in 2D culture (P=0.0059). The SB-200 derivative treatment induced an increased proportion of acridine orange/Hoechst double-stained cells (35.35 vs. 3.14%, P=0.0002) compared with nontreated cells, with apoptosis morphological alterations independent of caspase 7 activation (P>0.05). MCF-7 cells became less responsive to SB-200 and to doxorubicin in 3D culture compared with cells in 2D culture (higher IC50 values); however, SB-200 showed a better cytotoxic effect compared with doxorubicin in 3D culture. Therefore, the current study provides an insight into anticancer potential of thiophene derivatives, and further studies should be conducted to understand the mechanism by which thiophene derivatives act on cancer cells.

6.
Molecules ; 18(12): 15035-50, 2013 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-24322489

RESUMEN

Thiazacridine and imidazacridine derivatives have shown promising results as tumors suppressors in some cancer cell lines. For a better understanding of the mechanism of action of these compounds, binding studies of 5-acridin-9-ylmethylidene-3-amino-2-thioxo-thiazolidin-4-one, 5-acridin-9-ylmethylidene-2-thioxo-thiazolidin-4-one, 5-acridin-9-ylmethylidene-2-thioxo-imidazolidin-4-one and 3-acridin-9-ylmethyl-thiazolidin-2,4-dione with calf thymus DNA (ctDNA) by electronic absorption and fluorescence spectroscopy and circular dichroism spectroscopy were performed. The binding constants ranged from 1.46 × 10(4) to 6.01 × 10(4) M(-1). UV-Vis, fluorescence and circular dichroism measurements indicated that the compounds interact effectively with ctDNA, both by intercalation or external binding. They demonstrated inhibitory activities to human topoisomerase I, except for 5-acridin-9-ylmethylidene-2-thioxo-1,3-thiazolidin-4-one. These results provide insight into the DNA binding mechanism of imidazacridines and thiazacridines.


Asunto(s)
Acridinas/síntesis química , Acridinas/farmacología , Inhibidores de Topoisomerasa I/síntesis química , Inhibidores de Topoisomerasa I/farmacología , Acridinas/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacología , Dicroismo Circular , ADN/química , ADN/metabolismo , ADN-Topoisomerasas de Tipo I/metabolismo , Activación Enzimática/efectos de los fármacos , Humanos , Estructura Molecular , Inhibidores de Topoisomerasa I/metabolismo
7.
Biomed Res Int ; 2013: 926060, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24078927

RESUMEN

Rheumatoid arthritis (RA) is an autoimmune disease frequently characterized by chronic synovitis of multiple joints. The pathogenesis of RA is complex and involves many proinflammatory cytokines as Th17 related ones. PPAR γ is a nuclear receptor activator that represses proinflammatory gene expression. Thus, this work aimed to synthetize a new thiazolidinedione (TZD) analogue based on a well-known anti-inflammatory and PPAR γ agonist activity of this ring and evaluate its anti-inflammatory activity. After chemical structure confirmation, the compound named 5-(5-bromo-2-methoxy-benzylidene)-3-(2-nitro-benzyl)-thiazolidine-2,4-dione TM17 was submitted to cytokine releasing inhibition and PPAR γ genetic modulation assays. The new compound showed no toxicity on human and murine cells, decreasing IL-6 secretion by murine splenocytes and reducing IL-17A, IL-22, and IFN- γ expression in peripheral blood mononuclear cells from patients with RA. TM17 was more efficient in modulating the mRNA expression of PPAR γ than its well-used TZD agonist rosiglitazone. Surprisingly, TM17 was efficient on IL-17A and IFN- γ reduction, like the positive control methylprednisolone, and presented a better effect on IL-22 levels. In conclusion, PBMCs obtained from RA patients under TM17 treatment present a significant reduction in IL-17A, IL-22, and IFN- γ levels, but not IL-6 when compared with nontreated cells, as well as increase PPAR γ mRNA expression in absence of stimulus addressing it as a promising molecule in RA treatment.


Asunto(s)
Artritis Reumatoide/metabolismo , Artritis Reumatoide/patología , Citocinas/biosíntesis , Leucocitos Mononucleares/metabolismo , Tiazolidinedionas/síntesis química , Tiazolidinedionas/farmacología , Adulto , Anciano , Anciano de 80 o más Años , Animales , Estudios de Casos y Controles , Demografía , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Mediadores de Inflamación/metabolismo , Interferón gamma/biosíntesis , Interleucina-17/biosíntesis , Interleucina-6/biosíntesis , Interleucinas/biosíntesis , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Persona de Mediana Edad , PPAR gamma/genética , PPAR gamma/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Tiazolidinedionas/química , Interleucina-22
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA